Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism

被引:8
作者
Liu, Donghuan [1 ]
Zhang, Jing [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing Key Lab Magnetophotoelect Composite & Int, Beijing, Peoples R China
[2] Univ Sci & Technol Beijing, Basic Expt Ctr Nat Sci, Beijing, Peoples R China
来源
PLOS ONE | 2018年 / 13卷 / 03期
基金
中国国家自然科学基金;
关键词
CONSTRICTION RESISTANCE; HEAT-CONDUCTION; INTERFACE; PERFORMANCE; FABRICATION; ALLOYS; PIPES;
D O I
10.1371/journal.pone.0194483
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-temperature thermal contact resistance (TCR) plays an important role in heat-pipe-cooled thermal protection structures due to the existence of contact interface between the embedded heat pipe and the heat resistive structure, and the reduction mechanism of thermal contact resistance is of special interests in the design of such structures. The present paper proposed a finite element model of the high-temperature thermal contact resistance based on the multi-point contact model with the consideration of temperature-dependent material properties, heat radiation through the cavities at the interface and the effect of thermal interface material (TIM), and the geometry parameters of the finite element model are determined by simple surface roughness test and experimental data fitting. The experimental results of high-temperature thermal contact resistance between superalloy GH600 and C/C composite material are employed to validate the present finite element model. The effect of the crucial parameters on the thermal contact resistance with and without TIM are also investigated with the proposed finite element model.
引用
收藏
页数:21
相关论文
共 46 条
[1]  
[Anonymous], 2014, MECH ENG SERIES
[2]  
Ayers GH, 1996, AIAA960238, P1
[3]   Kapitza thermal resistance across individual grain boundaries in graphene [J].
Azizi, Khatereh ;
Hirvonen, Petri ;
Fan, Zheyong ;
Harju, Ari ;
Elder, Ken R. ;
Ala-Nissila, Tapio ;
Allaei, S. Mehdi Vaez .
CARBON, 2017, 125 :384-390
[4]   EXPERIMENTAL STUDY OF THERMAL CONTACT RESISTANCE IN HARDENED BEARING SURFACES [J].
Babu, S. ;
Manisekar, K. ;
Kumar, A. P. Senthil ;
Rajenthirakumar, D. .
EXPERIMENTAL HEAT TRANSFER, 2015, 28 (02) :189-203
[5]   Thermal contact resistance at low contact pressure: Effect of elastic deformation [J].
Bahrami, M ;
Yovanovich, MM ;
Culham, JR .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (16) :3284-3293
[6]   Thermal transport engineering in amorphous graphene: Non-equilibrium molecular dynamics study [J].
Bazrafshan, Saeed ;
Rajabpour, Ali .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 112 :379-386
[7]   Heat conduction across irregular and fractal-like surfaces [J].
Blyth, MG ;
Pozrikidis, C .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2003, 46 (08) :1329-1339
[8]   TRANSIENT MULTIDIMENSIONAL-ANALYSIS OF NONCONVENTIONAL HEAT PIPES WITH UNIFORM AND NONUNIFORM HEAT DISTRIBUTIONS [J].
CAO, Y ;
FAGHRI, A .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1991, 113 (04) :995-1002
[9]   Materials for thermal conduction [J].
Chung, DDL .
APPLIED THERMAL ENGINEERING, 2001, 21 (16) :1593-1605
[10]   A NOVEL CONCEPT FOR REDUCING THERMAL CONTACT RESISTANCE [J].
COOK, RS ;
TOKEN, KH ;
CALKINS, RL .
JOURNAL OF SPACECRAFT AND ROCKETS, 1984, 21 (01) :122-124