共 50 条
Folding and stability of the leucine-rich repeat domain of internalin B from Listeria monocytogenes
被引:25
作者:
Freiberg, A
Machner, MP
Pfeil, W
Schubert, WD
Heinz, DW
Seckler, R
机构:
[1] Univ Potsdam, D-14476 Potsdam, Germany
[2] GBF, Dept Biol Struct, D-38124 Braunschweig, Germany
关键词:
protein folding;
leucine-rich repeat;
protein stability;
spectroscopy;
3(10)-helix;
D O I:
10.1016/j.jmb.2004.01.044
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Internalin B (InlB), a surface protein of the human pathogen Listeria monocytogenes, promotes invasion into various host cell types by inducing phagocytosis of the entire bacterium. The N-terminal half of InlB (residues 36-321, InlB(321)), which is sufficient for this process, contains a central leucine-rich repeat (LRR) domain that is flanked by a small a-helical cap 2 and an immunoglobulin (Ig)-like domain. Here we investigated the variant lacking the Ig-like domain (lnlB(248)). The circular dichroism spectra of both protein variants in the far ultraviolet region are very similar, with a characteristic minimum found at similar to200 nm, possibly resulting from the high 3(10)-helical content in the LRR domain. Upon addition of chemical denaturants, both variants unfold in single transitions with unusually high cooperativity that are fully reversible and best described by two-state equilibria. The free energies of GdmCl-induced unfolding determined from transitions at 20degreesC are 9.9(+/- 0.8)kcal/mol for InlB(321) and 5.4(+/- 0.4) kcal/mol for InlB(248). InlB(321) is also more stable against thermal denaturation, as observed by scanning calorimetry. This suggests, that the Ig-like domain, which presumably does not directly interact with the host cell receptor during bacterial invasion, plays a critical role for the in vivo stability of InlB. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:453 / 461
页数:9
相关论文