Achieving rapid Li-ion insertion kinetics in TiO2 mesoporous nanotube arrays for bifunctional high-rate energy storage smart windows

被引:39
作者
Tong, Zhongqiu [1 ,2 ]
Liu, Shikun [3 ]
Li, Xingang [4 ]
Mai, Liqiang [5 ]
Zhao, Jiupeng [3 ]
Li, Yao [2 ]
机构
[1] Southwest Petr Univ, Sch Mat Sci & Engn, Chengdu 610500, Sichuan, Peoples R China
[2] Harbin Inst Technol, Ctr Composite Mat & Struct, Harbin 150001, Heilongjiang, Peoples R China
[3] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150001, Heilongjiang, Peoples R China
[4] China Construct Fourth Engn Div Corp LTD, Guangzhou 510000, Guangdong, Peoples R China
[5] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
DIFFUSION-COEFFICIENT; OXIDE; PERFORMANCE; ELECTRODES; DEVICE; ELECTROCHROMISM; FABRICATION; BATTERIES; ANATASE; FILMS;
D O I
10.1039/c7nr07703c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Smart electrochromic windows integrated with electrochemical energy storage capacity are receiving increasing interest for green buildings. However, the fabrication of bifunctional devices that demonstrate high-rate capability with stable and desirable optical modulation still remains a great challenge. Herein, a facile sacrificial template-accelerated hydrolysis approach is presented to prepare a designed lithium-ion insertion-type material layer on a fluorine-doped tin oxide substrate, with TiO2 mesoporous nanotube array (MNTA) film as an example, with rapid Li-ion insertion kinetics and without sacrificing window transparency, to meet requirements. A bifunctional device is assembled to exhibit the optical-electrochemical superiority of MNTA nanostructures. The as-assembled bifunctional smart window exhibits strong electrochromic contrast and high-rate capability in the fast galvanostatic charge/discharge process. For instance, at 1 A g(-1), it completes the charge or discharge process within only 232 s and delivers a high, reversible and stable specific capacity of 60 mA h g(-1), accompanying obvious transmittance modulation in the visible spectrum, with a typical value of ca. 30.4% at 700 nm, and strong color changes between deep blue and transparency.
引用
收藏
页码:3254 / 3261
页数:8
相关论文
共 32 条
  • [1] Lithium-ion storage properties of titanium oxide nanosheets
    Augustyn, Veronica
    White, Edward R.
    Ko, Jesse
    Gruener, George
    Regan, Brian C.
    Dunn, Bruce
    [J]. MATERIALS HORIZONS, 2014, 1 (02) : 219 - 223
  • [2] Pseudocapacitive oxide materials for high-rate electrochemical energy storage
    Augustyn, Veronica
    Simon, Patrice
    Dunn, Bruce
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) : 1597 - 1614
  • [3] Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
  • [4] Electrochromic smart windows: energy efficiency and device aspects
    Azens, A
    Granqvist, CG
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2003, 7 (02) : 64 - 68
  • [5] Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review
    Baetens, Ruben
    Jelle, Bjorn Petter
    Gustavsen, Arild
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (02) : 87 - 105
  • [6] Transparent TiO2 Nanotube Electrodes via Thin Layer Anodization: Fabrication and Use in Electrochromic Devices
    Berger, S.
    Ghicov, A.
    Nah, Y. -C.
    Schmuki, P.
    [J]. LANGMUIR, 2009, 25 (09) : 4841 - 4844
  • [7] Templated Nanocrystal-Based Porous TiO2 Films for Next-Generation Electrochemical Capacitors
    Brezesinski, Torsten
    Wang, John
    Polleux, Julien
    Dunn, Bruce
    Tolbert, Sarah H.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (05) : 1802 - 1809
  • [8] Hydrothermally Processed TiO2 Nanowire Electrodes with Antireflective and Electrochromic Properties
    Chen, Jing-Zhi
    Ko, Wen-Yin
    Yen, Yin-Cheng
    Chen, Po-Hung
    Lin, Kuan-Jiuh
    [J]. ACS NANO, 2012, 6 (08) : 6633 - 6639
  • [9] Oxide electrochromics: An introduction to devices and materials
    Granqvist, Claes G.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 99 : 1 - 13
  • [10] Lee JH, 2005, J PHYS CHEM B, V109, P13056, DOI [10.1021/jp0522031, 10.1021/jp052203l]