LARGE-TIME BEHAVIOR OF A PARABOLIC-PARABOLIC CHEMOTAXIS MODEL WITH LOGARITHMIC SENSITIVITY IN ONE DIMENSION

被引:81
作者
Tao, Youshan [1 ]
Wang, Lihe [2 ]
Wang, Zhi-An [3 ]
机构
[1] Donghua Univ, Dept Appl Math, Shanghai 200051, Peoples R China
[2] Univ Iowa, Dept Math, MLH 15, Iowa City, IA 52242 USA
[3] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2013年 / 18卷 / 03期
基金
中国国家自然科学基金;
关键词
Chemotaxis; repulsion; logarithmic sensitivity; global dynamics; Lyapunov functional; entropy inequality; REACTION-DIFFUSION EQUATIONS; NONLINEAR STABILITY; GLOBAL-SOLUTIONS; TRAVELING-WAVES; BLOW-UP; SYSTEM; AGGREGATION; INITIATION; EXISTENCE;
D O I
10.3934/dcdsb.2013.18.821
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the chemotaxis system {u(t) = Du(xx) - chi[u(ln v)(x)](x), x is an element of (0, 1), t > 0, v(t) = epsilon v(xx) + uv - mu v, x is an element of (0, 1), t > 0, under Neumann boundary condition, where chi < 0, D > 0, epsilon > 0 and mu > 0 are constants. It is shown that for any sufficiently smooth initial data (u(0), v(0)) fulfilling u(0) >= 0, u(0) not equivalent to 0 and v(0) > 0, the system possesses a unique global smooth solution that enjoys exponential convergence properties in L-infinity(Omega) as time goes to infinity, which depend on the sign of mu - (u) over bar (0), where (u) over bar (0) := integral(1)(0) u0dx. Moreover, we prove that the constant pair (mu, (mu/lambda)(D/chi)) (where lambda > 0 is an arbitrary constant) is the only positive stationary solution. The biological implications of our results will be given in the paper.
引用
收藏
页码:821 / 845
页数:25
相关论文
共 45 条
  • [1] Alikakos Nicholas D., 1979, Comm. Partial Differential Equations, V4, P827, DOI DOI 10.1080/03605307908820113
  • [2] Almgren Fred., 2000, J GEOM ANAL, V10, P1
  • [3] [Anonymous], 1998, PARTIAL DIFFERENTIAL
  • [4] [Anonymous], 1968, TRANSLATIONS MATH MO
  • [5] [Anonymous], 1996, 2 ORDER PARABOLIC DI, DOI DOI 10.1142/3302
  • [6] [Anonymous], 1998, Not. Am. Math. Soc.
  • [7] [Anonymous], 1966, ANN SCUOLA NORM-SCI
  • [8] Biler P., 1999, ADV MATH SCI APPL, V9, P347
  • [9] Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities
    Carrillo, JA
    Jüngel, A
    Markowich, PA
    Toscani, G
    Unterreiter, A
    [J]. MONATSHEFTE FUR MATHEMATIK, 2001, 133 (01): : 1 - 82
  • [10] Cieslak T., 2008, Banach Center Publ., Polish Acad. Sci. Inst. Math., V81, P105