Adaptive dynamic surface control of UAV based on RBF neural network

被引:0
作者
Tian, Zengwu [1 ,2 ]
Zhou, Yimin [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 101407, Peoples R China
来源
2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC) | 2021年
基金
中国国家自然科学基金;
关键词
Adaptive control; Dynamic surface control; RBF neural network; UAV; CONTROL STRATEGIES; QUADROTOR;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned aerial vehicle (UAV) is an underactuated complex nonlinear system, which is easily affected by external disturbance during the flight. In order to achieve high precision trajectory tracking of UAV under the disturbances, the dynamic surface control technology is used to ensure the trajectory tracking capability of the UAV, while the radial basis function (RBF) neural network is used to estimate and compensate the disturbance to realize the disturbance rejection. The stability of the proposed control system is proved by Lyapunov stability theory. Simulation experiments have been performed to validate that the proposed method has high precision trajectory tracking ability and good anti-disturbance capability.
引用
收藏
页码:694 / 699
页数:6
相关论文
共 21 条
[1]   Control Strategies and Novel Techniques for Autonomous Rotorcraft Unmanned Aerial Vehicles: A Review [J].
Abdelmaksoud, Sherif I. ;
Mailah, Musa ;
Abdallah, Ayman M. .
IEEE ACCESS, 2020, 8 :195142-195169
[2]   An FPGA comparative study of high-level and low-level combined designs for HEVC intra, inverse quantization, and IDCT/IDST 2D modules [J].
Ben Atitallah, Ahmed ;
Kammoun, Manel ;
Ali, Karim M. A. ;
Ben Atitallah, Rabie .
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2020, 48 (08) :1274-1290
[3]   Tracking Flight Control of Quadrotor Based on Disturbance Observer [J].
Chen, Mou ;
Xiong, Shixun ;
Wu, Qingxian .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (03) :1414-1423
[4]  
Han Q., 2020, IEEE ACCESS, V8, DOI DOI 10.1109/ACCESS.6287639
[5]  
Huang TP, 2020, CHIN CONTR CONF, P6893, DOI 10.23919/CCC50068.2020.9188679
[6]  
Jing Q, 2019, CHIN CONTR CONF, P8360, DOI [10.23919/ChiCC.2019.8865754, 10.23919/chicc.2019.8865754]
[7]   A Comprehensive Survey of Control Strategies for Autonomous Quadrotors [J].
Kim, Jinho ;
Gadsden, S. Andrew ;
Wilkerson, Stephen A. .
CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING-REVUE CANADIENNE DE GENIE ELECTRIQUE ET INFORMATIQUE, 2020, 43 (01) :3-16
[8]   Adaptive Dynamic Surface Control Design for Uncertain Nonlinear Strict-Feedback Systems With Unknown Control Direction and Disturbances [J].
Ma, Hui ;
Liang, Hongjing ;
Zhou, Qi ;
Ahn, Choon Ki .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (03) :506-515
[9]  
Duc MN, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, P506, DOI 10.1109/ICMA.2015.7237537
[10]   Nonlinear PID-Type Controller for Quadrotor Trajectory Tracking [J].
Moreno-Valenzuela, Javier ;
Perez-Alcocer, Ricardo ;
Guerrero-Medina, Manuel ;
Dzul, Alejandro .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2018, 23 (05) :2436-2447