A proof of Yomdin-Gromov's Algebraic Lemma

被引:17
作者
Burguet, David [1 ]
机构
[1] Ecole Polytech, CNRS, CMLS, UMR 7640, F-91128 Palaiseau, France
关键词
D O I
10.1007/s11856-008-1069-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following the analysis of differentiable mappings of Y. Yomdin, M. Gromov has stated a very elegant "Algebraic Lemma" which says that the "differentiable size" of an algebraic subset may be bounded only in terms of its dimension, degree and diameter, regardless of the size and specific values of the underlying coefficients. We give a complete and elementary proof of Gromov's result.
引用
收藏
页码:291 / 316
页数:26
相关论文
共 16 条
[1]  
Abraham R., 1967, Z ASTROPHYS
[2]  
[Anonymous], 1987, Ergebnisse der Mathematik und ihrer Grenzgebiete
[3]   The entropy theory of symbolic extensions [J].
Boyle, M ;
Downarowicz, T .
INVENTIONES MATHEMATICAE, 2004, 156 (01) :119-161
[4]   Residual entropy, conditional entropy and subshift covers [J].
Boyle, M ;
Fiebig, D ;
Fiebig, U .
FORUM MATHEMATICUM, 2002, 14 (05) :713-757
[5]   Intrinsic ergodicity of smooth interval maps [J].
Buzzi, J .
ISRAEL JOURNAL OF MATHEMATICS, 1997, 100 (1) :125-161
[6]  
BUZZI J, 2002, ERGODIC TOPOLOGICAL
[7]  
Comte G., 2004, LECT NOTES MATH, V1834
[8]  
COSTE M, 1982, LECT NOTES MATH, V959, P109
[9]   SRB measures as zero-noise limits [J].
Cowieson, W ;
Young, LS .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :1115-1138
[10]  
DOWNAROWICZ T, 2004, INVENTIONES MATH