Non-squareness properties of Orlicz-Lorentz sequence spaces

被引:33
作者
Foralewski, Pawel [1 ]
Hudzik, Henryk [1 ]
Kolwicz, Pawel [2 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
[2] Poznan Univ Tech, Inst Math, Elect Fac, PL-60965 Poznan, Poland
关键词
Uniform non-squareness; Locally uniform non-squareness; Non-squareness; Orlicz-Lorentz space; Lorentz space; Orlicz space; Strict monotonicity; Uniform monotonicity; Super-reflexivity; Fixed point property; GEOMETRIC-PROPERTIES; ROTUNDITY STRUCTURE; SYMMETRICAL SPACES; MONOTONICITY; CONVEXITY; CONSTANTS; CESARO; POINTS;
D O I
10.1016/j.jfa.2012.10.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper criteria for non-squareness properties (non-squareness, local uniform non-squareness and uniform non-squareness) of Orlicz-Lorentz sequence spaces lambda(phi,omega) and of their n-dimensional subspaces lambda(n)(phi,omega) (n >= 2) as well as of the subspaces (lambda(phi,omega))(a) of all order continuous elements in lambda(phi,omega) are given. Since degenerate Orlicz functions phi and degenerate weight sequences w are also admitted, these investigations concern the most possible wide class of Orlicz-Lorentz sequence spaces. Finally, as immediate consequences, criteria for all non-squareness properties of Orlicz sequence spaces, which complete the results of Sundaresan (1966) [53], Hudzik (1985) [23], Hudzik (1985) [24], are deduced. Iris worth recalling that uniform non-squareness is an important property, because it implies super-reflexivity as well as the fixed point property (see James (1964) [31], James (1972) [33] and Garcia-Falser et al. (2006) [19]). (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:605 / 629
页数:25
相关论文
共 53 条
[1]   UNIFORM CONVEXITY IN LORENTZ SEQUENCE SPACES [J].
ALTSHULER, Z .
ISRAEL JOURNAL OF MATHEMATICS, 1975, 20 (3-4) :260-274
[2]  
[Anonymous], 1996, DISS MATH
[3]  
Bennett C., 1988, Interpolation of operators
[4]  
Birkhoff G., 1967, LATTICE THEORY AMER
[5]   ON THE ISOMETRIES OF THE LORENTZ FUNCTION-SPACES [J].
CAROTHERS, NL ;
HAYDON, R ;
LIN, PK .
ISRAEL JOURNAL OF MATHEMATICS, 1993, 84 (1-2) :265-287
[6]   EQUIDISTRIBUTED RANDOM-VARIABLES IN LP,Q [J].
CAROTHERS, NL ;
DILWORTH, SJ .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 84 (01) :146-159
[7]   ON THE GEOMETRY OF THE UNIT SPHERES OF THE LORENTZ SPACES LW,1 [J].
CAROTHERS, NL ;
DILWORTH, SJ ;
TRAUTMAN, DA .
GLASGOW MATHEMATICAL JOURNAL, 1992, 34 :21-25
[8]   ON THE GEOMETRY OF SOME CALDERON-LOZANOVSKII INTERPOLATION SPACES [J].
CERDA, J ;
HUDZIK, H ;
MASTYLO, M .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1995, 6 (01) :35-49
[9]   Geometric properties of symmetric spaces with applications to Orlicz-Lorentz spaces [J].
Cerda, J ;
Hudzik, H ;
Kaminska, A ;
Mastylo, M .
POSITIVITY, 1998, 2 (04) :311-337
[10]  
Chen S. T., 1988, COMMENT MATH U CAROL, V29, P13