Sensitive Real-Time Monitoring of Refractive Indexes Using a Novel Graphene-Based Optical Sensor

被引:76
作者
Xing, Fei [1 ,2 ]
Liu, Zhi-Bo [1 ,2 ]
Deng, Zhi-Chao [1 ,2 ]
Kong, Xiang-Tian [1 ,2 ]
Yan, Xiao-Qing [1 ,2 ,3 ,4 ]
Chen, Xu-Dong [1 ,2 ]
Ye, Qing [1 ,2 ]
Zhang, Chun-Ping [1 ,2 ]
Chen, Yong-Sheng [3 ,4 ]
Tian, Jian-Guo [1 ,2 ]
机构
[1] Nankai Univ, Key Lab Weak Light Nonlinear Photon, Minist Educ, Teda Appl Phys Sch, Tianjin 300071, Peoples R China
[2] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China
[3] Nankai Univ, Coll Chem, Key Lab Funct Polymer Mat, Inst Polymer Chem, Tianjin 300071, Peoples R China
[4] Nankai Univ, Inst Polymer Chem, Coll Chem, Ctr Nanoscale Sci & Technol, Tianjin 300071, Peoples R China
来源
SCIENTIFIC REPORTS | 2012年 / 2卷
关键词
PHOTONICS;
D O I
10.1038/srep00908
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Based on the polarization-sensitive absorption of graphene under conditions of total internal reflection, a novel optical sensor combining graphene and a microfluidic structure was constructed to achieve the sensitive real-time monitoring of refractive indexes. The atomic thickness and strong broadband absorption of graphene cause it to exhibit very different reflectivity for transverse electric and transverse magnetic modes in the context of a total internal reflection structure, which is sensitive to the media in contact with the graphene. A graphene refractive index sensor can quickly and sensitively monitor changes in the local refractive index with a fast response time and broad dynamic range. These results indicate that graphene, used in a simple and efficient total internal reflection structure and combined with microfluidic techniques, is an ideal material for fabricating refractive index sensors and biosensor devices, which are in high demand.
引用
收藏
页数:7
相关论文
共 32 条
  • [1] TOTAL INTERNAL-REFLECTION FLUORESCENCE
    AXELROD, D
    BURGHARDT, TP
    THOMPSON, NL
    [J]. ANNUAL REVIEW OF BIOPHYSICS AND BIOENGINEERING, 1984, 13 : 247 - 268
  • [2] Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices
    Bao, Qiaoliang
    Loh, Kian Ping
    [J]. ACS NANO, 2012, 6 (05) : 3677 - 3694
  • [3] Bao QL, 2011, NAT PHOTONICS, V5, P411, DOI [10.1038/nphoton.2011.102, 10.1038/NPHOTON.2011.102]
  • [4] Making graphene visible
    Blake, P.
    Hill, E. W.
    Castro Neto, A. H.
    Novoselov, K. S.
    Jiang, D.
    Yang, R.
    Booth, T. J.
    Geim, A. K.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (06)
  • [5] Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
  • [6] Born M., 1999, Principles of Optics
  • [7] Optical constants of graphene layers in the visible range
    Bruna, M.
    Borini, S.
    [J]. APPLIED PHYSICS LETTERS, 2009, 94 (03)
  • [8] Oxygen sensors made by monolayer graphene under room temperature
    Chen, C. W.
    Hung, S. C.
    Yang, M. D.
    Yeh, C. W.
    Wu, C. H.
    Chi, G. C.
    Ren, F.
    Pearton, S. J.
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (24)
  • [9] How to optically count graphene layers
    Cheon, Sosan
    Kihm, Kenneth David
    Park, Jae Sung
    Lee, Joon Sik
    Lee, Byeong Jun
    Kim, Hyeoungkeun
    Hong, Byung Hee
    [J]. OPTICS LETTERS, 2012, 37 (18) : 3765 - 3767
  • [10] Graphene: Status and Prospects
    Geim, A. K.
    [J]. SCIENCE, 2009, 324 (5934) : 1530 - 1534