Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.)

被引:255
作者
Rollins, J. A. [1 ]
Habte, E. [1 ]
Templer, S. E. [2 ]
Colby, T. [1 ]
Schmidt, J. [1 ]
von Korff, M. [1 ]
机构
[1] Max Planck Inst Plant Breeding Res, D-50829 Cologne, Germany
[2] Inst Resistance Res & Stress Tolerance, JKI, Fed Res Ctr Cultivated Plants, D-06484 Quedlinburg, Germany
关键词
Abiotic stress; barley; drought; heat; proteomics; Rubisco activase; yield; RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE ACTIVASE; PLANT CRATEROSTIGMA-PLANTAGINEUM; HIGH-TEMPERATURE; SALT STRESS; INTROGRESSION LINES; OXYGENASE ACTIVASE; WHEAT LEAF; ARABIDOPSIS; GROWTH; EXPRESSION;
D O I
10.1093/jxb/ert158
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The objective of this study was to identify barley leaf proteins differentially regulated in response to drought and heat and the combined stresses in context of the morphological and physiological changes that also occur. The Syrian landrace Arta and the Australian cultivar Keel were subjected to drought, high temperature, or a combination of both treatments starting at heading. Changes in the leaf proteome were identified using differential gel electrophoresis and mass spectrometry. The drought treatment caused strong reductions of biomass and yield, while photosynthetic performance and the proteome were not significantly changed. In contrast, the heat treatment and the combination of heat and drought reduced photosynthetic performance and caused changes of the leaf proteome. The proteomic analysis identified 99 protein spots differentially regulated in response to heat treatment, 14 of which were regulated in a genotype-specific manner. Differentially regulated proteins predominantly had functions in photosynthesis, but also in detoxification, energy metabolism, and protein biosynthesis. The analysis indicated that de novo protein biosynthesis, protein quality control mediated by chaperones and proteases, and the use of alternative energy resources, i.e. glycolysis, play important roles in adaptation to heat stress. In addition, genetic variation identified in the proteome, in plant growth and photosynthetic performance in response to drought and heat represent stress adaption mechanisms to be exploited in future crop breeding efforts.
引用
收藏
页码:3201 / 3212
页数:12
相关论文
共 55 条
[1]   Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley [J].
Ahmed, Imrul Mosaddek ;
Dai, Huaxin ;
Zheng, Weite ;
Cao, Fangbin ;
Zhang, Guoping ;
Sun, Dongfa ;
Wu, Feibo .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2013, 63 :49-60
[2]   In maize, two distinct ribulose 1,5-bisphosphate carboxylase/oxygenase activase transcripts have different day/night patterns of expression [J].
Ayala-Ochoa, A ;
Vargas-Suárez, M ;
Loza-Tavera, H ;
León, P ;
Jiménez-García, LF ;
Sánchez-de-Jiménez, E .
BIOCHIMIE, 2004, 86 (07) :439-449
[3]   Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit [J].
Baerenfaller, Katja ;
Massonnet, Catherine ;
Walsh, Sean ;
Baginsky, Sacha ;
Buehlmann, Peter ;
Hennig, Lars ;
Hirsch-Hoffmann, Matthias ;
Howell, Katharine A. ;
Kahlau, Sabine ;
Radziejwoski, Amandine ;
Russenberger, Doris ;
Rutishauser, Dorothea ;
Small, Ian ;
Stekhoven, Daniel ;
Sulpice, Ronan ;
Svozil, Julia ;
Wuyts, Nathalie ;
Stitt, Mark ;
Hilson, Pierre ;
Granier, Christine ;
Gruissem, Wilhelm .
MOLECULAR SYSTEMS BIOLOGY, 2012, 8
[4]   Drought and salt tolerance in plants [J].
Bartels, D ;
Sunkar, R .
CRITICAL REVIEWS IN PLANT SCIENCES, 2005, 24 (01) :23-58
[5]  
Baum Michael, 2007, P51, DOI 10.1007/978-1-4020-6297-1_3
[6]   Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry [J].
Chang, WWP ;
Huang, L ;
Shen, M ;
Webster, C ;
Burlingame, AL ;
Roberts, JKM .
PLANT PHYSIOLOGY, 2000, 122 (02) :295-317
[7]   A LABORATORY PROCEDURE FOR DETERMINING THE FIELD CAPACITY OF SOILS [J].
COLMAN, EA .
SOIL SCIENCE, 1947, 63 (04) :277-283
[8]  
Coventry SJ, 2004, P 9 INT BARL GEN S B, P920
[9]   The two forms of ribulose-1,5-bisphosphate carboxylase/oxygenase activase differ in sensitivity to elevated temperature [J].
CraftsBrandner, SJ ;
vandeLoo, FJ ;
Salvucci, ME .
PLANT PHYSIOLOGY, 1997, 114 (02) :439-444
[10]   EFFECT OF HEAT AND DROUGHT STRESS ON SORGHUM (SORGHUM-BICOLOR) .1. PANICLE DEVELOPMENT AND LEAF APPEARANCE [J].
CRAUFURD, PQ ;
FLOWER, DJ ;
PEACOCK, JM .
EXPERIMENTAL AGRICULTURE, 1993, 29 (01) :61-76