Thermodynamic analysis of a novel multigeneration energy system based on heat recovery from a biomass CHP cycle

被引:38
作者
Soltani, Reza [1 ]
Dincer, Ibrahim [1 ]
Rosen, Marc A. [1 ]
机构
[1] Univ Ontario, Fac Engn & Appl Sci, Inst Technol UOIT, Oshawa, ON L1H 7K4, Canada
关键词
Multigeneration; Exergy analysis; Heat recovery; District heating; Wood drying; Biomass; ORGANIC RANKINE-CYCLE; WASTE HEAT; PERFORMANCE ANALYSIS; OPTIMIZATION; EXERGY; TRIGENERATION;
D O I
10.1016/j.applthermaleng.2015.05.081
中图分类号
O414.1 [热力学];
学科分类号
摘要
A multigeneration energy system with one fuel intake (sawdust biomass fuel) and five useful outputs is proposed and energy and exergy analyses are carried out to assess its performance. Instead of using a simple heat exchanger to satisfy district heating needs, applying a deaerator is found to result in 10% more hot water mass flow rate for the same conditions. The energy and exergy efficiencies of the multigeneration system are found to be around 60% and 25%, respectively, while the corresponding energy and exergy efficiencies of a biomass system with only electricity generation are 11% and 13%, respectively. When investigating the effect of adding various product outputs to biomass power generation, steam generation and then domestic hot water production are found to have the greatest enhancing effects on the system efficiencies. Heat recovery from exhaust gases for district heating and wood drying is found to enhance the energy efficiency more than the exergy efficiency. Also, due to the size of the heat recovery system, which is smaller than the biomass CHP cycle, district heating and drying cannot increase the energy and exergy efficiencies of the primary system like steam generation. A parametric study shows that the biomass fuel input rate affects significantly the district heating heat load and the electricity generation rate, in a linear manner. However, increasing the biomass input rate has no effect on the CHP system energy and exergy efficiencies, while increasing the exergy efficiency of the entire system and decreasing its corresponding energy efficiency slightly. Of the several heat recovery options from exhaust gases, electricity generation and wood drying result in the highest exergy efficiency while district heating and drying lead to highest energy efficiency. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:90 / 100
页数:11
相关论文
共 27 条
[1]   Exergoeconomic analysis and optimization of combined heat and power production: A review [J].
Abusoglu, Aysegul ;
Kanoglu, Mehmet .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2009, 13 (09) :2295-2308
[2]   Performance Assessment of a Novel Solar and Ocean Thermal Energy Conversion Based Multigeneration System for Coastal Areas [J].
Ahmadi, Pouria ;
Dincer, Ibrahim ;
Rosen, Marc A. .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2015, 137 (01)
[3]   Thermodynamic modeling and multi-objective evolutionary-based optimization of a new multigeneration energy system [J].
Ahmadi, Pouria ;
Dincer, Ibrahim ;
Rosen, Marc A. .
ENERGY CONVERSION AND MANAGEMENT, 2013, 76 :282-300
[4]   Development and assessment of an integrated biomass-based multi-generation energy system [J].
Ahmadi, Pouria ;
Dincer, Ibrahim ;
Rosen, Marc A. .
ENERGY, 2013, 56 :155-166
[5]   Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration [J].
Ahmadi, Pouria ;
Dincer, Ibrahim ;
Rosen, Marc A. .
ENERGY CONVERSION AND MANAGEMENT, 2012, 64 :447-453
[6]   Thermodynamic and exergoenvironmental analyses, and multi-objective optimization of a gas turbine power plant [J].
Ahmadi, Pouria ;
Dincer, Ibrahim .
APPLIED THERMAL ENGINEERING, 2011, 31 (14-15) :2529-2540
[7]  
Bejan A, 1996, THERMAL DESIGN OPTIM
[8]   Energy and exergy analysis of timber dryer assisted heat pump [J].
Ceylan, Ilhan ;
Aktas, Mustafa ;
Dogan, Hikmet .
APPLIED THERMAL ENGINEERING, 2007, 27 (01) :216-222
[9]   The role of exergy in energy policy making [J].
Dincer, I .
ENERGY POLICY, 2002, 30 (02) :137-149
[10]   Renewable-energy-based multigeneration systems [J].
Dincer, I. ;
Zamfirescu, C. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2012, 36 (15) :1403-1415