Approximation algorithm based on chain implication for constrained minimum vertex covers in bipartite graphs

被引:0
作者
Wang, Jian-Xin [1 ]
Xu, Xiao-Shuang [1 ]
Chen, Jian-Er [1 ,2 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha 410083, Peoples R China
[2] Texas A&M Univ, Dept Comp Sci, College Stn, TX 77843 USA
基金
中国国家自然科学基金;
关键词
Min-CVCB; parameter complexity; chain implication; approximation algorithm;
D O I
10.1007/s11390-008-9180-5
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The constrained minimum vertex cover problem on bipartite graphs (the Min-CVCB problem) is an important NP-complete problem. This paper presents a polynomial time approximation algorithm for the problem based on the technique of chain implication. For any given constant epsilon > 0, if an instance of the Min-CVCB problem has a minimum vertex cover of size (k(u), k(t)), our algorithm constructs a vertex cover of size (k(u)*, k(t)*), satisfying max {k(u)*/k(u), k(t)*/k(t)} <= 1 + epsilon.
引用
收藏
页码:763 / 768
页数:6
相关论文
共 13 条
[1]   COMPLEXITY OF FAULT-DIAGNOSIS IN COMPARISON MODELS [J].
BLOUGH, DM ;
PELC, A .
IEEE TRANSACTIONS ON COMPUTERS, 1992, 41 (03) :318-324
[2]  
BLOUGH DM, 1991, P 21 INT S FAULT TOL, P444
[3]   Constrained minimum vertex cover in bipartite graphs: complexity and parameterized algorithms [J].
Chen, H ;
Kanj, IA .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2003, 67 (04) :833-847
[4]  
CORRNEN TH, 1992, INTRO ALGORITHMS
[5]  
DOWNEY R, 1999, PARAMETERIZED COMPLE
[6]   An efficient exact algorithm for constraint bipartite vertex cover [J].
Fernau, H ;
Niedermeier, R .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2001, 38 (02) :374-410
[7]  
HASAN N, 1990, P 20 INT S FAULT TOL, P166
[8]  
HASAN N, 1988, P 18 INT S FAULT TOL, P348
[9]   EFFICIENT SPARE ALLOCATION FOR RECONFIGURABLE ARRAYS [J].
KUO, SY ;
FUCHS, WK .
IEEE DESIGN & TEST OF COMPUTERS, 1987, 4 (01) :24-31
[10]   A new class of efficient algorithms for reconfiguration of memory arrays [J].
Low, CP ;
Leong, HW .
IEEE TRANSACTIONS ON COMPUTERS, 1996, 45 (05) :614-618