WEAK SOLUTIONS FOR A VISCOUS p-LAPLACIAN EQUATION

被引:0
作者
Liu, Changchun [1 ,2 ]
机构
[1] Nanjing Normal Univ, Dept Math, Nanjing 210097, Jiangsu, Peoples R China
[2] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
关键词
Pseudo-parabolic equations; existence; uniqueness;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the pseudo-parabolic equation u(t) - K Delta u(t) = div(vertical bar del u vertical bar(p-2)del u). By using the time-discrete method, we establish the existence of weak solutions, and also discuss the uniqueness.
引用
收藏
页数:11
相关论文
共 11 条
[1]  
Barenblatt G. I., 1960, PMM-J APPL MATH MEC, V24, P1286, DOI DOI 10.1016/0021-8928(60)90107-6
[2]  
Chang Kungching, 1986, ORITICAL POINT THEOR
[3]   ON A THEORY OF HEAT CONDUCTION INVOLVING 2 TEMPERATURES [J].
CHEN, PJ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1968, 19 (04) :614-&
[4]  
Coleman B.D., 1965, Archive_for_Rational Mechanics_and_Analysis, V19, P100, DOI DOI 10.1007/BF00282277
[5]   ON THE MAXIMUM PRINCIPLE FOR PSEUDOPARABOLIC EQUATIONS [J].
DIBENEDETTO, E ;
PIERRE, M .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (06) :821-854
[6]   IMPLICIT DEGENERATE EVOLUTION-EQUATIONS AND APPLICATIONS [J].
DIBENEDETTO, E ;
SHOWALTER, RE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1981, 12 (05) :731-751
[7]   STABLE PATTERNS IN A VISCOUS DIFFUSION EQUATION [J].
NOVICKCOHEN, A ;
PEGO, RL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 324 (01) :331-351
[8]  
Rao VRG, 1972, ARCH RATION MECH AN, V49, P57, DOI DOI 10.1007/BF00281474
[9]  
Showalter R.E., 1970, SIAM J MATH ANAL, V1, P1, DOI [10.1137/0501001, DOI 10.1137/0501001]
[10]  
TING TW, 1969, J MATH SOC JPN, V21, P440