Fabricating graphene-titanium composites by laser sintering PVA bonding graphene titanium coating: Microstructure and mechanical properties

被引:48
作者
Hu, Zengrong [1 ,2 ]
Chen, Feng [2 ]
Xu, Jiale [3 ]
Ma, Zhenwu [2 ]
Guo, Huafeng [2 ]
Chen, Changjun [4 ]
Nian, Qiong [5 ]
Wang, Xiaonan [6 ]
Zhang, Min [4 ]
机构
[1] Soochow Univ, Sch Urban Rail Transportat, Suzhou 215131, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Mech & Elect Engn, Nanjing 210016, Jiangsu, Peoples R China
[3] Jiangsu Univ, Sch Mech Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[4] Soochow Univ, Coll Mech & Elect Engn, Suzhou 215131, Jiangsu, Peoples R China
[5] Arizona State Univ, Dept Mech Engn, Tempe, AZ 85281 USA
[6] Soochow Univ, Shagang Sch Iron & Steel, Suzhou 215131, Jiangsu, Peoples R China
关键词
Nanocomposites; Graphene; Titanium; Laser sintering; METAL-MATRIX COMPOSITES; TRIBOLOGICAL PROPERTIES; NANOPLATELETS GNPS; TENSILE PROPERTIES; STRENGTH; ENHANCEMENT; BEHAVIOR; CNTS;
D O I
10.1016/j.compositesb.2017.09.069
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Graphene reinforced titanium (Ti-Gr) nanocomposite was prepared by laser sintering of the mixture of PVA bonding graphene sheets and titanium powders. During laser sintering process, the survival and uniform dispersion of graphene have been demonstrated, which embedded in Ti matrix, and formed Ti-Gr nanocomposites. Microstructures and components of the nanocomposites were studied using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and Raman spectroscopy. The survival of graphene sheets in nanocomposite is due to rapid heating/cooling in laser sintering process. Hardness measurements showed that the laser sintered Ti-Gr nanocomposites achieved more than 2-fold Vickers Hardness value of barely sintered Ti. (C) 2017 Published by Elsevier Ltd.
引用
收藏
页码:133 / 140
页数:8
相关论文
共 47 条
[1]  
[Anonymous], INT MECH ENG C EXP
[2]  
ASTM, 2012, A29A29M04 ASTM
[3]   Carbon nanotube reinforced metal matrix composites - a review [J].
Bakshi, S. R. ;
Lahiri, D. ;
Agarwal, A. .
INTERNATIONAL MATERIALS REVIEWS, 2010, 55 (01) :41-64
[4]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[5]   The Ti-Al-C system (titanium-aluminum-carbon) [J].
Bandyopadhyay, D ;
Sharma, RC ;
Chakraborti, N .
JOURNAL OF PHASE EQUILIBRIA, 2000, 21 (02) :195-198
[6]   Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering [J].
Bastwros, Mina ;
Kim, Gap-Yong ;
Zhu, Can ;
Zhang, Kun ;
Wang, Shiren ;
Tang, Xiaoduan ;
Wang, Xinwei .
COMPOSITES PART B-ENGINEERING, 2014, 60 :111-118
[7]   Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites [J].
Chen, Lian-Yi ;
Konishi, Hiromi ;
Fehrenbacher, Axel ;
Ma, Chao ;
Xu, Jia-Quan ;
Choi, Hongseok ;
Xu, Hui-Fang ;
Pfefferkorn, Frank E. ;
Li, Xiao-Chun .
SCRIPTA MATERIALIA, 2012, 67 (01) :29-32
[8]   Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading [J].
Choi, Bong Kyu ;
Yoon, Gil Ho ;
Lee, Seungjun .
COMPOSITES PART B-ENGINEERING, 2016, 91 :119-125
[9]   Enhanced strength in bulk graphene-copper composites [J].
Chu, Ke ;
Jia, Chengchang .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2014, 211 (01) :184-190
[10]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57