Graph Neural Network with Self-attention and Multi-task Learning for Credit Default Risk Prediction

被引:3
|
作者
Li, Zihao [1 ]
Wang, Xianzhi [1 ]
Yao, Lina [2 ]
Chen, Yakun [1 ]
Xu, Guandong [1 ]
Lim, Ee-Peng [3 ]
机构
[1] Univ Technol Sydney, Sydney, NSW 2007, Australia
[2] Univ New South Wales, Sydney, NSW 2052, Australia
[3] Singapore Management Univ, Singapore 188065, Singapore
关键词
Credit default risk prediction; Graph neural network; Self-attention; Multi-task learning;
D O I
10.1007/978-3-031-20891-1_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a graph neural network with self-attention and multi-task learning (SaM-GNN) to leverage the advantages of deep learning for credit default risk prediction. Our approach incorporates two parallel tasks based on shared intermediate vectors for input vector reconstruction and credit default risk prediction, respectively. To better leverage supervised data, we use self-attention layers for feature representation of categorical and numeric data; we further link raw data into a graph and use a graph convolution module to aggregate similar information and cope with missing values during constructing intermediate vectors. Our method does not heavily rely on feature engineering work and the experiments show our approach outperforms several types of baseline methods; the intermediate vector obtained by our approach also helps improve the performance of ensemble learning methods.
引用
收藏
页码:616 / 629
页数:14
相关论文
共 50 条
  • [41] MULTI-TASK DEEP NEURAL NETWORK FOR MULTI-LABEL LEARNING
    Huang, Yan
    Wang, Wei
    Wang, Liang
    Tan, Tieniu
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 2897 - 2900
  • [42] Combining a multi-feature neural network with multi-task learning for emergency calls severity prediction
    Kanaan, Marianne Abi
    Couchot, Jean-Francois
    Guyeux, Christophe
    Laiymani, David
    Atechian, Talar
    Darazi, Rony
    ARRAY, 2024, 21
  • [43] Deep multi-task learning with relational attention for business success prediction
    Zhao, Jiejie
    Du, Bowen
    Sun, Leilei
    Lv, Weifeng
    Liu, Yanchi
    Xiong, Hui
    PATTERN RECOGNITION, 2021, 110
  • [44] A novel embedding learning framework for relation completion and recommendation based on graph neural network and multi-task learning
    Zhao, Wenbin
    Li, Yahui
    Fan, Tongrang
    Wu, Feng
    SOFT COMPUTING, 2022, 28 (Suppl 2) : 447 - 447
  • [45] Siamese Recurrent Neural Network with a Self-Attention Mechanism for Bioactivity Prediction
    Fernandez-Llaneza, Daniel
    Ulander, Silas
    Gogishvili, Dea
    Nittinger, Eva
    Zhao, Hongtao
    Tyrchan, Christian
    ACS OMEGA, 2021, 6 (16): : 11086 - 11094
  • [46] Interpretable Multi-Task Learning for Product Quality Prediction with Attention Mechanism
    Yeh, Cheng-Han
    Fan, Yao-Chung
    Peng, Wen-Chih
    2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2019), 2019, : 1910 - 1921
  • [47] SA-GNN: Prediction of material properties using graph neural network based on multi-head self-attention optimization
    Cui, Yasen
    Zhu, Jian
    Zhou, Wei
    Zang, Huaijuan
    Ren, Yongsheng
    Xu, Jiajia
    Zhan, Shu
    Ma, Wenhui
    AIP ADVANCES, 2024, 14 (05)
  • [48] Prosodic Structure Prediction using Deep Self-attention Neural Network
    Du, Yao
    Wu, Zhiyong
    Kang, Shiyin
    Su, Dan
    Yu, Dong
    Meng, Helen
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 320 - 324
  • [49] Self-Attention Factor Graph Neural Network for Multiagent Collaborative Target Tracking
    Xu, Cheng
    Su, Ran
    Wang, Ran
    Duan, Shihong
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (20): : 32381 - 32392
  • [50] Improving a neural network classifier ensemble with multi-task learning
    Ye, Qiang
    Munro, Paul W.
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 5164 - 5170