Bounds for the b-chromatic number of G - v

被引:13
作者
Balakrishnan, R. [1 ]
Raj, S. Francis [1 ]
机构
[1] SASTRA Univ, Srinivasa Ramanujan Ctr, Kumbakonam 612001, India
关键词
b-chromatic number;
D O I
10.1016/j.dam.2011.08.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The b-chromatic number of a graph G is defined as the maximum number k of colors in a proper coloring to the vertices of G in such a way that each color class contains at least one vertex adjacent to a vertex of every other color class. In this paper, we show that for any connected graph G on n >= 5 vertices and any v is an element of V (G), b(G) - (inverted right perpendicular n/2 inverted left perpendicular - 2) <= b(G - v) <= b(G) + left perpendicular n/2 right perpendicular - 2. Further we determine all the graphs which attain these bounds. (c) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1173 / 1179
页数:7
相关论文
共 16 条
  • [1] On the b-continuity property of graphs
    Barth, Dominique
    Cohen, Johanne
    Faik, Taoufik
    [J]. DISCRETE APPLIED MATHEMATICS, 2007, 155 (13) : 1761 - 1768
  • [2] ACHROMATIC NUMBER IS NP-COMPLETE FOR COGRAPHS AND INTERVAL-GRAPHS
    BODLAENDER, HL
    [J]. INFORMATION PROCESSING LETTERS, 1989, 31 (03) : 135 - 138
  • [3] Chartrand G, 2009, CRC DISCR MATH APPL, P1
  • [4] On approximating the b-chromatic number
    Corteel, S
    Valencia-Pabon, M
    Vera, JC
    [J]. DISCRETE APPLIED MATHEMATICS, 2005, 146 (01) : 106 - 110
  • [5] Effantin B, 2003, DISCRET MATH THEOR C, V6, P45
  • [6] Faik T., 2004, ELECT NOTES DISCRETE, V17, P151, DOI [10.1016/j.endm.2004.03.030, DOI 10.1016/J.ENDM.2004.03.030]
  • [7] Harary F., 1970, J COMB THEORY, V8, P154, DOI DOI 10.1016/S0021-9800(70)80072-2
  • [8] GRAPH WITH GIVEN ACHROMATIC NUMBER
    HELL, P
    MILLER, DJ
    [J]. DISCRETE MATHEMATICS, 1976, 16 (03) : 195 - 207
  • [9] On the b-dominating coloring of graphs
    Hoàng, CT
    Kouider, M
    [J]. DISCRETE APPLIED MATHEMATICS, 2005, 152 (1-3) : 176 - 186
  • [10] The b-chromatic number of a graph
    Irving, RW
    Manlove, DF
    [J]. DISCRETE APPLIED MATHEMATICS, 1999, 91 (1-3) : 127 - 141