Exponential Stability Analysis for Linear Distributed Parameter Systems with Time-Varying Delay

被引:0
作者
Guo Ling [1 ]
Nian Xiaohong [1 ]
Pan Huan [1 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha 410075, Hunan, Peoples R China
来源
2011 30TH CHINESE CONTROL CONFERENCE (CCC) | 2011年
关键词
Distributed parameter systems; Time-delay; Exponential stability; Linear operator inequality; FUNCTIONAL-DIFFERENTIAL EQUATIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates exponential stability of time-delay distributed parameter systems in the Hilbert space. With the aid of delay decomposition methods, a novel Lyapunov-Krasovskii functional in the form of linear operator inequalities (LOIs) is proposed. Then, the sufficient conditions guaranteeing exponential stability of systems are obtained by the Lapunov-Krasovskii theory. Furthermore, our results are applied to the time-delay heat equation with the Dirichlet boundary condition. A numerical simulation to the heat equation is given to illustrate the effectiveness of the theoretical analysis.
引用
收藏
页码:980 / 985
页数:6
相关论文
共 15 条
  • [1] Boyd S., 1994, LINEAR MATRIX INEQUA
  • [2] Curtain RF, 2012, An Introduction to Infinite-dimensional Linear Systems Theory, V21
  • [3] New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems
    Fridman, E
    [J]. SYSTEMS & CONTROL LETTERS, 2001, 43 (04) : 309 - 319
  • [4] Exponential stability of linear distributed parameter systems with time-varying delays
    Fridman, Emilia
    Orlov, Yury
    [J]. AUTOMATICA, 2009, 45 (01) : 194 - 201
  • [5] GU K., 2003, CONTROL ENGN SER BIR
  • [6] A discrete delay decomposition approach to stability of linear retarded and neutral systems
    Han, Qing-Long
    [J]. AUTOMATICA, 2009, 45 (02) : 517 - 524
  • [7] Absolute stability of time-delay systems with sector-bounded nonlinearity
    Han, QL
    [J]. AUTOMATICA, 2005, 41 (12) : 2171 - 2176
  • [8] On stability of linear neutral systems with mixed time delays: A discretized Lyapunov functional approach
    Han, QL
    [J]. AUTOMATICA, 2005, 41 (07) : 1209 - 1218
  • [9] Delay-range-dependent stability for systems with time-varying delay
    He, Yong
    Wang, Qing-Guo
    Lin, Chong
    Wu, Min
    [J]. AUTOMATICA, 2007, 43 (02) : 371 - 376
  • [10] Synchronization stability of general complex dynamical networks with time-varying delays
    Li, Kun
    Guan, Shuguang
    Gong, Xiaofeng
    Lai, C. -H.
    [J]. PHYSICS LETTERS A, 2008, 372 (48) : 7133 - 7139