A PAES based optimization of RBF networks to predict overhead feeder failures

被引:0
作者
Cochenour, G [1 ]
Simon, J [1 ]
Nag, S [1 ]
Odeh, O [1 ]
Poupe, J [1 ]
Pahwa, A [1 ]
机构
[1] Kansas State Univ, Dept Elect & Comp Engn, Manhattan, KS 66506 USA
来源
PROCEEDINGS OF THE 8TH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1-3 | 2005年
关键词
Pareto Archive Evolutionary Strategy; radial basis function;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper details a method for the multi-objective optimization of radial basis function (RBF) networks to predict failures in an overhead power distribution system. The error and number of kernels are both minimized using the Pareto Archive Evolutionary Strategy. The networks are trained to predict the number of failures based upon daily weather data and outage histories from a Midwestern utility. The results indicate that this method is capable of predicting the daily number of failures.
引用
收藏
页码:1726 / 1729
页数:4
相关论文
共 17 条
[1]   A new algorithm for online structure and parameter adaptation of RBF networks [J].
Alexandridis, A ;
Sarimveis, H ;
Bafas, G .
NEURAL NETWORKS, 2003, 16 (07) :1003-1017
[2]  
[Anonymous], 1999, P IEEE C EVOLUTIONAR, DOI DOI 10.1109/CEC.1999.781913
[3]  
BILLINGS SA, 1995, RADIAL BASIS FUNCTIO, V8, P302
[4]  
Broomhead D. S., 1988, Complex Systems, V2, P321
[5]   ORTHOGONAL LEAST-SQUARES LEARNING ALGORITHM FOR RADIAL BASIS FUNCTION NETWORKS [J].
CHEN, S ;
COWAN, CFN ;
GRANT, PM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (02) :302-309
[6]   Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks [J].
Chen, S ;
Wu, Y ;
Luk, BL .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (05) :1239-1243
[7]  
Coello C. A. C., 1999, Knowledge and Information Systems, V1, P269
[8]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[9]   An Overview of Evolutionary Algorithms in Multiobjective Optimization [J].
Fonseca, Carlos M. ;
Fleming, Peter J. .
EVOLUTIONARY COMPUTATION, 1995, 3 (01) :1-16
[10]   Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation [J].
González, J ;
Rojas, I ;
Ortega, J ;
Pomares, H ;
Fernández, J ;
Díaz, AF .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (06) :1478-1495