Uniqueness of the solution to the 2D Vlasov-Navier-Stokes system

被引:19
作者
Han-Kwan, Daniel [1 ]
Miot, Evelyne [2 ]
Moussa, Ayman [3 ]
Moyano, Ivan [4 ]
机构
[1] Ecole Polytech, CNRS, Ctr Math Laurent Schwartz UMR 7640, F-91128 Palaiseau, France
[2] Univ Grenoble Alpes, CNRS, Inst Fourier UMR 5582, BP 74, F-38402 St Martin Dheres, France
[3] Univ Paris Diderot SPC, Sorbonne Univ, CNRS, UMR 7598,Lab Jacques Louis Lions, F-75005 Paris, France
[4] Univ Cambridge, Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WA, England
关键词
Fluid-particle flows; weak solutions; uniqueness; fluid-kinetic systems; GLOBAL EXISTENCE; EQUATIONS; REGULARITY;
D O I
10.4171/RMI/1120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a uniqueness result for weak solutions to the Vlasov-Navier-Stokes system in two dimensions, both in the whole space and in the periodic case, under a mild decay condition on the initial distribution function. The main result is achieved by combining methods from optimal transportation (introduced in this context by G. Loeper) with the use of Hardy's maximal function, in order to obtain some fine Wasserstein-like estimates for the difference of two solutions of the Vlasov equation.
引用
收藏
页码:37 / 60
页数:24
相关论文
共 22 条
[1]  
Acerbi E., 1988, Material Instabilities in Continuum Mechanics (Edinburgh, 1985-1986), P1
[2]  
Anoshchenko O, 1997, MATH METHOD APPL SCI, V20, P495, DOI 10.1002/(SICI)1099-1476(199704)20:6<495::AID-MMA858>3.0.CO
[3]  
2-O
[4]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[5]   EXISTENCE THEORY FOR THE KINETIC-FLUID COUPLING WHEN SMALL DROPLETS ARE TREATED AS PART OF THE FLUID [J].
Benjelloun, Saad ;
Desvillettes, Laurent ;
Moussa, Ayman .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2014, 11 (01) :109-133
[6]   Global existence of solutions to the incompressible Navier-Stokes-Vlasov equations in a time-dependent domain [J].
Boudin, Laurent ;
Grandmont, Celine ;
Moussa, Ayman .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) :1317-1340
[7]   Modelling and Numerics for Respiratory Aerosols [J].
Boudin, Laurent ;
Grandmont, Celine ;
Lorz, Alexander ;
Moussa, Ayman .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 18 (03) :723-756
[8]  
Boudin L, 2009, DIFFER INTEGRAL EQU, V22, P1247
[9]  
Boyer F., 2013, Applied Mathematical Sciences, V183
[10]   On the global wellposedness of the 3-D Navier-Stokes equations with large initial data [J].
Chemin, Jean-Yves ;
Gallagher, Isabelle .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2006, 39 (04) :679-698