QUALITATIVE ANALYSIS OF SOLUTIONS FOR A CLASS OF ANISOTROPIC ELLIPTIC EQUATIONS WITH VARIABLE EXPONENT

被引:10
作者
Afrouzi, G. A. [1 ]
Mirzapour, M. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
机构
[1] Univ Mazandaran, Fac Math Sci, Dept Math, Babol Sar, Iran
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[3] Romanian Acad, Inst Math Simion Stoilow, POB 1-764, Bucharest 014700, Romania
关键词
degenerate anisotropic Sobolev spaces; variable exponent; Dirichlet boundary value condition; fountain theorem; Ekeland variational principle; SPACES; MULTIPLICITY; EXISTENCE;
D O I
10.1017/S0013091515000346
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are concerned with the degenerate anisotropic problem - [GRAPHICS] partial derivative(xi) a(i) (x, partial derivative(xi) u) + b(x) vertical bar u vertical bar (P)(+-2)(+) u = f(x, u) in Omega, u = 0 on partial derivative Omega. We first establish the existence of an unbounded sequence of weak solutions. We also obtain the existence of a non-trivial weak solution if the nonlinear term f has a special form. The proofs rely on the fountain theorem and Ekeland's variational principle.
引用
收藏
页码:541 / 557
页数:17
相关论文
共 27 条