A-Numerical Radius and Product of Semi-Hilbertian Operators

被引:13
作者
Zamani, Ali [1 ]
机构
[1] Farhangian Univ, Dept Math, Tehran, Iran
关键词
Positive operator; Semi-inner product; A-numerical radius; INEQUALITIES; RANGE;
D O I
10.1007/s41980-020-00388-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a positive bounded operator on a Hilbert space (H, <., .>). The semi-inner product < x, y >(A) := < Ax, y >, x, y is an element of H, induces a seminorm parallel to . parallel to(A) on H. Let w(A)(T) denote the A-numerical radius of an operator T in the semi-Hilbertian space (H, parallel to . parallel to(A)). In this paper, for any semi-Hilbertian operators T and S, we show that w(A)(T R) = w(A)(SR) for all ( A-rank one) semi-Hilbertian operator R if and only if A(1/2)T = lambda A(1/2)S for some complex unit lambda. From this result, we derive a number of consequences.
引用
收藏
页码:371 / 377
页数:7
相关论文
共 14 条
[1]   Joint numerical ranges of operators in semi-Hilbertian spaces [J].
Baklouti, Hamadi ;
Feki, Kais ;
Ahmed, Ould Ahmed Mahmoud Sid .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 555 :266-284
[2]  
BRANGES L. DE, 1966, SQUARE SUMMABLE POWE
[3]   A definition of numerical range of rectangular matrices [J].
Chorianopoulos, Ch ;
Karanasios, S. ;
Psarrakos, P. .
LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (05) :459-475
[4]   On lifting of operators to Hilbert spaces induced by positive selfadjoint operators [J].
Cojuhari, P ;
Gheondea, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (02) :584-598
[5]   Projections in operator ranges [J].
Corach, G ;
Maestripieri, A ;
Stojanoff, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (03) :765-778
[6]   Partial isometries and pseudoinverses in semi-Hilbertian spaces [J].
Fongi, Guillermina ;
Celeste Gonzalez, M. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 495 :324-343
[7]   Polynomial numerical hulls of the direct sum of two Jordan blocks [J].
Karami, Saeed ;
Salemi, Abbas .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 585 :209-226
[8]  
Arias ML, 2009, ACTA SCI MATH, V75, P635
[9]   Ergodic properties of operators in some semi-Hilbertian spaces [J].
Majdak, Witold ;
Secelean, Nicolae-Adrian ;
Suciu, Laurian .
LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (02) :139-159
[10]   Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces [J].
Moslehian, M. S. ;
Xu, Q. ;
Zamani, A. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 591 :299-321