Valley-spin blockade and spin resonance in carbon nanotubes

被引:107
作者
Pei, Fei [1 ]
Laird, Edward A. [1 ]
Steele, Gary A. [1 ]
Kouwenhoven, Leo P. [1 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, NL-2600 GA Delft, Netherlands
关键词
SINGLE-ELECTRON SPIN; QUANTUM; OSCILLATIONS;
D O I
10.1038/nnano.2012.160
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The manipulation and readout of spin qubits in quantum dots have been successfully achieved using Pauli blockade, which forbids transitions between spin-triplet and spin-singlet states(1). Compared with spin qubits realized in III-V materials(2-5), group IV materials such as silicon and carbon are attractive for this application because of their low decoherence rates ( nuclei with zero spins)(6,7). However, valley degeneracies in the electronic band structure of these materials combined with Coulomb interactions reduce the energy difference between the blocked and unblocked states(8-10), significantly weakening the selection rules for Pauli blockade. Recent demonstrations of spin qubits in silicon devices have required strain and spatial confinement to lift the valley degeneracy(7). In carbon nanotubes, Pauli blockade can be observed by lifting valley degeneracy through disorder(11-14), but this makes the confinement potential difficult to control. To achieve Pauli blockade in low-disorder nanotubes, quantum dots have to be made ultrasmall(8,9), which is incompatible with conventional fabrication methods. Here, we exploit the bandgap of low-disorder nanotubes to demonstrate robust Pauli blockade based on both valley and spin selection rules. We use a novel stamping technique to create a bent nanotube, in which single-electron spin resonance is detected using the blockade. Our results indicate the feasibility of valley-spin qubits in carbon nanotubes.
引用
收藏
页码:630 / 634
页数:5
相关论文
共 29 条
[1]   Pauli spin blockade in carbon nanotube double quantum dots [J].
Buitelaar, M. R. ;
Fransson, J. ;
Cantone, A. L. ;
Smith, C. G. ;
Anderson, D. ;
Jones, G. A. C. ;
Ardavan, A. ;
Khlobystov, A. N. ;
Watt, A. A. R. ;
Porfyrakis, K. ;
Briggs, G. A. D. .
PHYSICAL REVIEW B, 2008, 77 (24)
[2]   Spin-orbit interaction and anomalous spin relaxation in carbon nanotube quantum dots [J].
Bulaev, Denis V. ;
Trauzettel, Bjoern ;
Loss, Daniel .
PHYSICAL REVIEW B, 2008, 77 (23)
[3]   Electron transport in very clean, as-grown suspended carbon nanotubes [J].
Cao, J ;
Wang, Q ;
Dai, H .
NATURE MATERIALS, 2005, 4 (10) :745-749
[4]   Transport Spectroscopy of an Impurity Spin in a Carbon Nanotube Double Quantum Dot [J].
Chorley, S. J. ;
Giavaras, G. ;
Wabnig, J. ;
Jones, G. A. C. ;
Smith, C. G. ;
Briggs, G. A. D. ;
Buitelaar, M. R. .
PHYSICAL REVIEW LETTERS, 2011, 106 (20)
[5]   Electron-nuclear interaction in 13C nanotube double quantum dots [J].
Churchill, H. O. H. ;
Bestwick, A. J. ;
Harlow, J. W. ;
Kuemmeth, F. ;
Marcos, D. ;
Stwertka, C. H. ;
Watson, S. K. ;
Marcus, C. M. .
NATURE PHYSICS, 2009, 5 (05) :321-326
[6]   Relaxation and Dephasing in a Two-Electron 13C Nanotube Double Quantum Dot [J].
Churchill, H. O. H. ;
Kuemmeth, F. ;
Harlow, J. W. ;
Bestwick, A. J. ;
Rashba, E. I. ;
Flensberg, K. ;
Stwertka, C. H. ;
Taychatanapat, T. ;
Watson, S. K. ;
Marcus, C. M. .
PHYSICAL REVIEW LETTERS, 2009, 102 (16)
[7]   Bends in nanotubes allow electric spin control and coupling [J].
Flensberg, Karsten ;
Marcus, Charles M. .
PHYSICAL REVIEW B, 2010, 81 (19)
[8]   Spins in few-electron quantum dots [J].
Hanson, R. ;
Kouwenhoven, L. P. ;
Petta, J. R. ;
Tarucha, S. ;
Vandersypen, L. M. K. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (04) :1217-1265
[9]   Gate-Dependent Orbital Magnetic Moments in Carbon Nanotubes [J].
Jespersen, T. S. ;
Grove-Rasmussen, K. ;
Flensberg, K. ;
Paaske, J. ;
Muraki, K. ;
Fujisawa, T. ;
Nygard, J. .
PHYSICAL REVIEW LETTERS, 2011, 107 (18)
[10]   Driven coherent oscillations of a single electron spin in a quantum dot [J].
Koppens, F. H. L. ;
Buizert, C. ;
Tielrooij, K. J. ;
Vink, I. T. ;
Nowack, K. C. ;
Meunier, T. ;
Kouwenhoven, L. P. ;
Vandersypen, L. M. K. .
NATURE, 2006, 442 (7104) :766-771