Coefficient inequalities for a subclass of Bazilevic functions

被引:2
作者
Fitri, Sa'adatul [1 ]
Marjono [1 ]
Thomas, Derek K. [2 ]
Wibowo, Ratno Bagus Edy [1 ]
机构
[1] Brawijaya Univ, Dept Math, Malang, Indonesia
[2] Swansea Univ, Dept Math, Swansea, W Glam, Wales
关键词
univalent functions; Bazilevi; coefficients; inverse; Fekete-Szego; Hankel determinant; 2ND HANKEL DETERMINANT;
D O I
10.1515/dema-2020-0040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be analytic in d = {z: vertical bar z vertical bar < 1} with F(Z) = z + Sigma(n =2) (infinity) a(n)z(n), and for a >= 0 and 0 < lambda <= 1, let B-1(a, lambda) denote the subclass of Bazilevic functions satisfying broken vertical bar f'z(z)/f(z)1-a - < -f z z 1. f z 1 a for 0 <. = 1. We give sharp bounds for various coefficient problems when f is an element of 1(a,.), thus extending recent work in the case lambda = 1.
引用
收藏
页码:27 / 37
页数:11
相关论文
共 25 条
[1]  
Ali R. M., 2003, Bull. Malays. Math. Sci. Soc, V26, P63
[2]  
Bazilevic IE., 1955, Mat. Sb, V79, P471
[3]   Initial Coefficients for Subclass of Bazilevic Functions [J].
Fitri, Sa'adatul ;
Marjono ;
Thomas, D. K. ;
Bagus, R. .
14TH INTERNATIONAL SYMPOSIUM ON GEOMETRIC FUNCTION THEORY AND APPLICATIONS, 2019, 1212
[4]  
Fournier R., 2007, Complex Var. Elliptic Equ, V52, P1, DOI [DOI 10.1080/17476930600780149, 10.1080/17476930600780149]
[5]  
HAYMAN WK, 1968, P LOND MATH SOC, V18, P77
[6]  
Janteng J., 2007, International Journal of Mathematical Analysis, V1, P619
[7]   COEFFICIENT BOUNDS FOR THE INVERSE OF A FUNCTION WITH DERIVATIVE IN P [J].
LIBERA, RJ ;
ZLOTKIEWICZ, EJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 87 (02) :251-257
[8]   THE DERIVATIVE OF BAZILEVIC-FUNCTIONS [J].
LONDON, RR ;
THOMAS, DK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (01) :235-238
[9]  
Marjono D.K., 2019, Aust. J. Math. Appl., V16, P1
[10]   2ND HANKEL DETERMINANT OF AREALLY MEAN P-VALENT FUNCTIONS [J].
NOONAN, JW ;
THOMAS, DK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 223 (OCT) :337-346