Inversion symmetric 3-monopoles and the Atiyah-Hitchin manifold

被引:10
作者
Houghton, CJ [1 ]
Sutcliffe, PM [1 ]
机构
[1] UNIV KENT,INST MATH,CANTERBURY CT2 7NZ,KENT,ENGLAND
关键词
D O I
10.1088/0951-7715/9/6/013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider 3-monopoles symmetric under inversion symmetry. We show that the moduli space of these monopoles is an Atiyah-Hitchin submanifold of the 3-monopole moduli space. This allows what is known about 2-monopole dynamics to be translated into results about the dynamics of 3-monopoles. Using a numerical ADHMN construction we compute the monopole energy density at various points on two interesting geodesics. The first is a geodesic over the two-dimensional rounded cone submanifold corresponding to right angle scattering and the second is a closed geodesic for three orbiting monopoles.
引用
收藏
页码:1609 / 1622
页数:14
相关论文
共 21 条
[1]  
[Anonymous], 1982, MONOPOLES QUANTUM FI
[2]  
Atiyah M., 1988, GEOMETRY DYNAMICS MA
[3]   CLOSED GEODESICS ON THE SPACE OF STABLE 2-MONOPOLES [J].
BATES, L ;
MONTGOMERY, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (04) :635-640
[4]   Monopoles, particles and rational functions [J].
Bielawski, R .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1996, 14 (02) :123-145
[5]  
BIELAWSKI R, 1996, EXISTENCE CLOSED GEO
[6]   NAHM EQUATIONS AND HYPERKAHLER GEOMETRY [J].
DANCER, AS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 158 (03) :545-568
[7]   NAHM EQUATIONS AND THE CLASSIFICATION OF MONOPOLES [J].
DONALDSON, SK .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 96 (03) :387-407
[8]   THE MODULI SPACE METRIC FOR WELL-SEPARATED BPS MONOPOLES [J].
GIBBONS, GW ;
MANTON, NS .
PHYSICS LETTERS B, 1995, 356 (01) :32-38
[9]   CLASSICAL AND QUANTUM DYNAMICS OF BPS MONOPOLES [J].
GIBBONS, GW ;
MANTON, NS .
NUCLEAR PHYSICS B, 1986, 274 (01) :183-224
[10]   SYMMETRIC MONOPOLES [J].
HITCHIN, NJ ;
MANTON, NS ;
MURRAY, MK .
NONLINEARITY, 1995, 8 (05) :661-692