LiftReg: Limited Angle 2D/3D Deformable Registration

被引:5
|
作者
Tian, Lin [1 ]
Lee, Yueh Z. [2 ]
Estepar, Raul San Jose [3 ]
Niethammer, Marc [1 ]
机构
[1] Univ North Carolina Chapel Hill, Dept Comp Sci, Chapel Hill, NC 27599 USA
[2] Univ North Carolina Chapel Hill, Dept Radiol, Chapel Hill, NC USA
[3] Harvard Med Sch, Boston, MA USA
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VI | 2022年 / 13436卷
基金
美国国家卫生研究院;
关键词
Registration; Lung; Limited angle; Deep learning; COPDGENE;
D O I
10.1007/978-3-031-16446-0_20
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
We propose LiftReg, a 2D/3D deformable registration approach. LiftReg is a deep registration framework which is trained using sets of digitally reconstructed radiographs (DRR) and computed tomography (CT) image pairs. By using simulated training data, LiftReg can use a high-quality CT-CT image similarity measure, which helps the network to learn a high-quality deformation space. To further improve registration quality and to address the inherent depth ambiguities of very limited angle acquisitions, we propose to use features extracted from the backprojected 2D images and a statistical deformation model. We test our approach on the DirLab lung registration dataset and show that it outperforms an existing learning-based pairwise registration approach.
引用
收藏
页码:207 / 216
页数:10
相关论文
共 50 条
  • [1] 2D/3D deformable registration using a hybrid atlas
    Tang, TSY
    Ellis, RE
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2005, PT 2, 2005, 3750 : 223 - 230
  • [2] Local Metric Learning in 2D/3D Deformable Registration With Application in the Abdomen
    Zhao, Qingyu
    Chou, Chen-Rui
    Mageras, Gig
    Pizer, Stephen
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (08) : 1592 - 1600
  • [3] Model-based 3D/2D Deformable Registration of MR Images
    Marami, Bahram
    Sirouspour, Shahin
    Capson, David W.
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 4880 - 4883
  • [4] Non-Rigid Registration of 3D Surfaces by Deformable 2D Triangular Meshes
    Savran, Arman
    Sankur, Buelent
    2008 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, VOLS 1-3, 2008, : 985 - 990
  • [5] 2D/3D registration of multiple bones
    Ma, Burton
    Stewart, James
    Pichora, David
    Ellis, Randy
    Abolmaesumi, Purang
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 860 - 863
  • [6] Deep Iterative 2D/3D Registration
    Jaganathan, Srikrishna
    Wang, Jian
    Borsdorf, Anja
    Shetty, Karthik
    Maier, Andreas
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT IV, 2021, 12904 : 383 - 392
  • [7] 2D/3D image registration on the GPU
    Kubias A.
    Deinzer F.
    Feldmann T.
    Paulus D.
    Schreiber B.
    Brunner Th.
    Pattern Recognition and Image Analysis, 2008, 18 (03) : 381 - 389
  • [8] Elastic 3D–2D Image Registration
    Paul Striewski
    Benedikt Wirth
    Journal of Mathematical Imaging and Vision, 2022, 64 : 443 - 462
  • [9] Evaluating 2D/3D registration accuracy
    LaRose, D
    Bayouth, J
    Kanade, T
    CARS 2000: COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2000, 1214 : 147 - 152
  • [10] Versatile multiple object tracking in sparse 2D/3D videos via deformable image registration
    Ryu, James
    Nejatbakhsh, Amin
    Torkashvand, Mahdi
    Gangadharan, Sahana
    Seyedolmohadesin, Maedeh
    Kim, Jinmahn
    Paninski, Liam
    Venkatachalam, Vivek
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (05)