Monitoring tropical forest succession at landscape scales despite uncertainty in Landsat time series

被引:22
作者
Caughlin, T. Trevor [1 ]
Barber, Cristina [1 ]
Asner, Gregory P. [2 ,3 ]
Glenn, Nancy F. [4 ,5 ]
Bohlman, Stephanie A. [6 ]
Wilson, Chris H. [7 ]
机构
[1] Boise State Univ, Biol Sci, Boise, ID 83725 USA
[2] Arizona State Univ, Ctr Global Discovery & Conservat Sci, Hilo, HI 96720 USA
[3] Arizona State Univ, Ctr Global Discovery & Conservat Sci, Tempe, AZ 85287 USA
[4] Boise State Univ, Dept Geosci, Boise, ID 83725 USA
[5] Univ New South Wales, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia
[6] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA
[7] Univ Florida, Agron Dept, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
forest landscape restoration; hierarchical Bayes; Landsat time series; Landsat-lidar fusion; large-scale restoration; Latin America; natural regeneration; reforestation; spatial prioritization; state-space model; tropical forest succession; HIERARCHICAL MODEL; BIOMASS ESTIMATION; AIRBORNE LIDAR; RECOVERY; DISTURBANCE; COVER; VARIABILITY; HEIGHT; STATE; REFLECTANCE;
D O I
10.1002/eap.2208
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Forecasting rates of forest succession at landscape scales will aid global efforts to restore tree cover to millions of hectares of degraded land. While optical satellite remote sensing can detect regional land cover change, quantifying forest structural change is challenging. We developed a state-space modeling framework that applies Landsat satellite data to estimate variability in rates of natural regeneration between sites in a tropical landscape. Our models work by disentangling measurement error in Landsat-derived spectral reflectance from process error related to successional variability. We applied our modeling framework to rank rates of forest succession between 10 naturally regenerating sites in Southwestern Panama from about 2001 to 2015 and tested how different models for measurement error impacted forecast accuracy, ecological inference, and rankings of successional rates between sites. We achieved the greatest increase in forecasting accuracy by adding intra-annual phenological variation to a model based on Landsat-derived normalized difference vegetation index (NDVI). The best-performing model accounted for inter- and intra-annual noise in spectral reflectance and translated NDVI to canopy height via Landsat-lidar fusion. Modeling forest succession as a function of canopy height rather than NDVI also resulted in more realistic estimates of forest state during early succession, including greater confidence in rank order of successional rates between sites. These results establish the viability of state-space models to quantify ecological dynamics from time series of space-borne imagery. State-space models also provide a statistical approach well-suited to fusing high-resolution data, such as airborne lidar, with lower-resolution data that provides better temporal and spatial coverage, such as the Landsat satellite record. Monitoring forest succession using satellite imagery could play a key role in achieving global restoration targets, including identifying sites that will regain tree cover with minimal intervention.
引用
收藏
页数:18
相关论文
共 108 条
[1]   A diffusive logistic growth model to describe forest recovery [J].
Acevedo, Miguel A. ;
Marcano, Mariano ;
Fletcher, Robert J., Jr. .
ECOLOGICAL MODELLING, 2012, 244 :13-19
[2]   Review of State-Space Models for Fisheries Science [J].
Aeberhard, William H. ;
Flemming, Joanna Mills ;
Nielsen, Anders .
ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 5, 2018, 5 :215-235
[3]   Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm [J].
Ahmed, Oumer S. ;
Franklin, Steven E. ;
Wulder, Michael A. ;
White, Joanne C. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 101 :89-101
[4]   Deforestation and Reforestation of Latin America and the Caribbean (2001-2010) [J].
Aide, T. Mitchell ;
Clark, Matthew L. ;
Ricardo Grau, H. ;
Lopez-Carr, David ;
Levy, Marc A. ;
Redo, Daniel ;
Bonilla-Moheno, Martha ;
Riner, George ;
Andrade-Nunez, Maria J. ;
Muniz, Maria .
BIOTROPICA, 2013, 45 (02) :262-271
[5]   Monitoring the structure of forest restoration plantations with a drone-lidar system [J].
Almeida, D. R. A. ;
Broadbent, E. N. ;
Zambrano, A. M. A. ;
Wilkinson, B. E. ;
Ferreira, M. E. ;
Chazdon, R. ;
Meli, P. ;
Gorgens, E. B. ;
Silva, C. A. ;
Stark, S. C. ;
Valbuena, R. ;
Papa, D. A. ;
Brancalion, P. H. S. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 79 :192-198
[6]   The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration [J].
Almeida, D. R. A. ;
Stark, S. C. ;
Chazdon, R. ;
Nelson, B. W. ;
Cesar, R. G. ;
Meli, P. ;
Gorgens, E. B. ;
Duarte, M. M. ;
Valbuena, R. ;
Moreno, V. S. ;
Mendes, A. F. ;
Amazonas, N. ;
Goncalves, N. B. ;
Silva, C. A. ;
Schietti, J. ;
Brancalion, P. H. S. .
FOREST ECOLOGY AND MANAGEMENT, 2019, 438 :34-43
[7]   Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function [J].
Antonarakis, Alexander S. ;
Saatchi, Sassan S. ;
Chazdon, Robin L. ;
Moorcroft, Paul R. .
ECOLOGICAL APPLICATIONS, 2011, 21 (04) :1120-1137
[8]   High-fidelity national carbon mapping for resource management and REDD+ [J].
Asner G.P. ;
Mascaro J. ;
Anderson C. ;
Knapp D.E. ;
Martin R.E. ;
Kennedy-Bowdoin T. ;
van Breugel M. ;
Davies S. ;
Hall J.S. ;
Muller-Landau H.C. ;
Potvin C. ;
Sousa W. ;
Wright J. ;
Bermingham E. .
Carbon Balance and Management, 8 (1)
[9]   Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda [J].
Avitabile, Valerio ;
Baccini, Alessandro ;
Friedl, Mark A. ;
Schmullius, Christiane .
REMOTE SENSING OF ENVIRONMENT, 2012, 117 :366-380
[10]  
Betancourt M., 2017, arXiv