DEMO diagnostics and burn control

被引:34
作者
Biel, Wolfgang [1 ,2 ]
de Baar, Marco [3 ,4 ]
Dinklage, Andreas [5 ]
Felici, Federico [4 ]
Koenig, Ralf [5 ]
Meister, Hans [6 ]
Treutterer, Wolfgang [6 ]
Wenninger, Ronald [6 ,7 ]
机构
[1] Forschungszentrum Julich GmbH, Inst Energy & Climate Res, Julich, Germany
[2] Univ Ghent, Dept Appl Phys, B-9000 Ghent, Belgium
[3] FOM Inst DIFFER, Nieuwegein, Netherlands
[4] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[5] Max Planck Inst Plasma Phys, Greifswald, Germany
[6] Max Planck Inst Plasma Phys, Garching, Germany
[7] EFDA Power Plant Phys & Technol, Garching, Germany
关键词
DEMO; Tokamak; Stellarator; Plasma diagnostics; Actuators; Control; RESEARCH-AND-DEVELOPMENT; PLASMA CONTROL; ADVANCED TOKAMAK; ITER; DESIGN;
D O I
10.1016/j.fusengdes.2015.01.046
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The development of the control system for a tokamak demonstration fusion reactor (DEMO) faces unprecedented challenges. First, the requirements for control reliability and accuracy are more stringent than on existing fusion devices: any loss of plasma control on DEMO may result in a disruption which could damage the inner wall of the machine, while operating the device with larger margins against the operational limits would lead to a reduction of the electrical output power. Second, the performance of DEMO control is limited by space restrictions for the implementation of components (optimization of the tritium breeding rate), by lifetime issues for the front-end parts (neutron and gamma radiation, erosion and deposition acting on all components) and by slow, weak and indirect action of the available actuators (plasma shaping, heating and fuelling). The European DEMO conceptual design studies include the development of a reliable control system, since the details of the achievable plasma scenario and the machine design may depend on the actual performance of the control system. In the first phase of development, an initial understanding of the prime choices of diagnostic methods applicable to DEMO, implementation and performance issues, the interrelation with the plasma scenario definition, and the planning of necessary future R&D have been obtained. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:8 / 15
页数:8
相关论文
共 53 条
[1]   Fusion neutron diagnostics on ITER tokamak [J].
Bertalot, L. ;
Barnsley, R. ;
Direz, M. F. ;
Drevon, J. M. ;
Encheva, A. ;
Jakhar, S. ;
Kashchuk, Y. ;
Patel, K. M. ;
Arumugam, A. P. ;
Udintsev, V. ;
Walker, C. ;
Walsh, M. .
JOURNAL OF INSTRUMENTATION, 2012, 7
[2]   Overview on R&D and design activities for the ITER core charge exchange spectroscopy diagnostic system [J].
Biel, W. ;
Baross, T. ;
Bourauel, P. ;
Dunai, D. ;
Durkut, M. ;
Erdei, G. ;
Hawkes, N. ;
v. Hellermann, M. ;
Hogenbirk, A. ;
Jaspers, R. ;
Kiss, G. ;
Klinkhamer, F. ;
Koning, J. F. ;
Kotov, V. ;
Krasikov, Y. ;
Krimmer, A. ;
Lischtschenko, O. ;
Litnovsky, A. ;
Marchuk, O. ;
Neubauer, O. ;
Offermanns, G. ;
Panin, A. ;
Patel, K. ;
Pokol, G. ;
Schrader, M. ;
Snijders, B. ;
Szabo, V. ;
van der Valk, N. ;
Voinchet, R. ;
Wolters, J. ;
Zoletnik, S. .
FUSION ENGINEERING AND DESIGN, 2011, 86 (6-8) :548-551
[3]  
Biel W., 2011, INT WORKSH MFE ROADM
[4]   Magnetic Measuring Instrumentation With Radiation-Resistant Hall Sensors for Fusion Reactors: Experience of Testing at JET [J].
Bolshakova, I. ;
Quercia, A. ;
Coccorese, V. ;
Murari, A. ;
Holyaka, R. ;
Duran, I. ;
Viererbl, L. ;
Konopleva, R. ;
Yerashok, V. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2012, 59 (04) :1224-1231
[5]   Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X [J].
Bosch, H. -S. ;
Wolf, R. C. ;
Andreeva, T. ;
Baldzuhn, J. ;
Birus, D. ;
Bluhm, T. ;
Braeuer, T. ;
Braune, H. ;
Bykov, V. ;
Cardella, A. ;
Durodie, F. ;
Endler, M. ;
Erckmann, V. ;
Gantenbein, G. ;
Hartmann, D. ;
Hathiramani, D. ;
Heimann, P. ;
Heinemann, B. ;
Hennig, C. ;
Hirsch, M. ;
Holtum, D. ;
Jagielski, J. ;
Jelonnek, J. ;
Kasparek, W. ;
Klinger, T. ;
Koenig, R. ;
Kornejew, P. ;
Kroiss, H. ;
Krom, J. G. ;
Kuehner, G. ;
Laqua, H. ;
Laqua, H. P. ;
Lechte, C. ;
Lewerentz, M. ;
Maier, J. ;
McNeely, P. ;
Messiaen, A. ;
Michel, G. ;
Ongena, J. ;
Peacock, A. ;
Pedersen, T. S. ;
Riedl, R. ;
Riemann, H. ;
Rong, P. ;
Rust, N. ;
Schacht, J. ;
Schauer, F. ;
Schroeder, R. ;
Schweer, B. ;
Spring, A. .
NUCLEAR FUSION, 2013, 53 (12)
[6]   Plasma-surface interaction issues of an all-metal ITER [J].
Brooks, J. N. ;
Allain, P. ;
Doerner, R. P. ;
Hassanein, A. ;
Nygren, R. ;
Rognlien, T. D. ;
Whyte, D. G. .
NUCLEAR FUSION, 2009, 49 (03)
[7]   Towards Diagnostics for a Fusion Reactor [J].
Costley, Alan E. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2010, 38 (10) :2934-2943
[8]  
Day Ch., 2013, P 25 S FUS ENG SOFE
[9]   Survey of disruption causes at JET [J].
de Vries, P. C. ;
Johnson, M. F. ;
Alper, B. ;
Buratti, P. ;
Hender, T. C. ;
Koslowski, H. R. ;
Riccardo, V. .
NUCLEAR FUSION, 2011, 51 (05)
[10]   Statistical analysis of disruptions in JET [J].
de Vries, P. C. ;
Johnson, M. F. ;
Segui, I. .
NUCLEAR FUSION, 2009, 49 (05)