Primal-dual strategy for state-constrained optimal control problems

被引:101
作者
Bergounioux, M [1 ]
Kunisch, K [1 ]
机构
[1] Univ Orleans, UFR Sci, CNRS, UMR 6628, F-45067 Orleans 2, France
关键词
optimal control; state constraints; augmented Lagrangians; primal-dual method; active sets;
D O I
10.1023/A:1015489608037
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
State constrained optimal control problems represent severe analytical and numerical challenges. A numerical algorithm based on an active set strategy involving primal as well as dual variables, suggested by a generalized Moreau-Yosida regularization of the state constraint is proposed and analyzed. Numerical examples are included.
引用
收藏
页码:193 / 224
页数:32
相关论文
共 20 条
[11]  
Hager W. W., 1993, Computational Optimization and Applications, V1, P349, DOI 10.1007/BF00248762
[12]  
Hager William W., 1998, HIGH PERFORMANCE ALG, P243
[13]   DUAL APPROXIMATIONS IN OPTIMAL-CONTROL [J].
HAGER, WW ;
IANCULESCU, GD .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1984, 22 (03) :423-465
[14]  
HEINKENSCHLOSS M, ANAL LAGRANGE SQP NE
[15]   Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces [J].
Ito, K ;
Kunisch, K .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (5-6) :591-616
[16]   SOLUTION OF OPTIMAL-CONTROL PROBLEMS BY A POINTWISE PROJECTED NEWTON METHOD [J].
KELLEY, CT ;
SACHS, EW .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (06) :1731-1757
[17]   APPROXIMATE QUASI-NEWTON METHODS [J].
KELLEY, CT ;
SACHS, EW .
MATHEMATICAL PROGRAMMING, 1990, 48 (01) :41-70
[18]   REDUCED SQP METHODS FOR PARAMETER-IDENTIFICATION PROBLEMS [J].
KUNISCH, K ;
SACHS, EW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (06) :1793-1820
[19]  
Troianiello G.M., 1987, ELLIPTIC DIFFERENTIA
[20]  
Troltzsch F, 1994, CONTROL CYBERN, V23, P268