Primal-dual strategy for state-constrained optimal control problems

被引:101
作者
Bergounioux, M [1 ]
Kunisch, K [1 ]
机构
[1] Univ Orleans, UFR Sci, CNRS, UMR 6628, F-45067 Orleans 2, France
关键词
optimal control; state constraints; augmented Lagrangians; primal-dual method; active sets;
D O I
10.1023/A:1015489608037
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
State constrained optimal control problems represent severe analytical and numerical challenges. A numerical algorithm based on an active set strategy involving primal as well as dual variables, suggested by a generalized Moreau-Yosida regularization of the state constraint is proposed and analyzed. Numerical examples are included.
引用
收藏
页码:193 / 224
页数:32
相关论文
共 20 条
[1]   Primal-dual strategy for constrained optimal control problems [J].
Bergounioux, M ;
Ito, K ;
Kunisch, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (04) :1176-1194
[2]   Augmented Lagrangian techniques for elliptic state constrained optimal control problems [J].
Bergounioux, M ;
Kunisch, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (05) :1524-1543
[3]  
BERGOUNIOUX M, 1998, COMPARISON INTERIOR
[6]   Multiple-rank modifications of a sparse Cholesky factorization [J].
Davis, TA ;
Hager, WW .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 22 (04) :997-1013
[7]   Modifying a sparse Cholesky factorization [J].
Davis, TA ;
Hager, WW .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 20 (03) :606-627
[8]  
Hackbusch W., 1992, ELLIPTIC DIFFERENTIA
[9]  
HAGER W, 1992, ADV OPTIMIZATION PAR, P37
[10]  
HAGER W, ACTIVE SET STRATEGIE