Pyrochlore-based high-entropy ceramics for capacitive energy storage

被引:74
作者
CHEN, Yiying [1 ]
QI, Junlei [1 ]
ZHANG, Minhao [1 ]
LUO, Zixi [1 ]
LIN, Yuan-Hua [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
high entropy; bismuth-based pyrochlore; high-temperature stability; energy storage; DIELECTRIC-PROPERTIES; MICROSTRUCTURE; PERMITTIVITY; PERSPECTIVES; PROGRESS;
D O I
10.1007/s40145-022-0613-3
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High-performance dielectrics are widely used in high-power systems, electric vehicles, and aerospace, as key materials for capacitor devices. Such application scenarios under these extreme conditions require ultra-high stability and reliability of the dielectrics. Herein, a novel pyrochlore component with high-entropy design of Bi1.5Zn0.75Mg0.25Nb0.75Ta0.75O7 (BZMNT) bulk endows an excellent energy storage performance of W-rec approximate to 2.72 J/cm(3) together with an ultra-high energy efficiency of 91% at a significant enhanced electric field E-b of 650 kV/cm. Meanwhile, the temperature coefficient (TCC) of BZMNT (similar to -220 ppm/degrees C) is also found to be greatly improved compared with that of the pure Bi1.5ZnNb1.5O7 (BZN) (similar to -300 ppm/degrees C), demonstrating its potential application in temperature-reliable conditions. The high-entropy design results in lattice distortion that contributes to the polarization, while the retardation effect results in a reduction of grain size to submicron scale which enhances the E-b. The high-entropy design provides a new strategy for improving the high energy storage performance of ceramic materials.
引用
收藏
页码:1179 / 1185
页数:7
相关论文
共 36 条
[1]   Recent progress of high-entropy materials for energy storage and conversion [J].
Amiri, Azadeh ;
Shahbazian-Yassar, Reza .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (02) :782-823
[2]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[3]   A five-component entropy-stabilized fluorite oxide [J].
Chen, Kepi ;
Pei, Xintong ;
Tang, Lei ;
Cheng, Haoran ;
Li, Zemin ;
Li, Cuiwei ;
Zhang, Xiaowen ;
An, Linan .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (11) :4161-4164
[4]   Processing of Bi1.5ZnNb1.5O7 ceramics for LTCC applications: Comparison of synthesis and sintering methods [J].
da Silva, S. A. ;
Zanetti, S. M. .
CERAMICS INTERNATIONAL, 2009, 35 (07) :2755-2759
[5]   Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure [J].
Dabrowa, Juliusz ;
Stygar, Miroslaw ;
Mikula, Andrzej ;
Knapik, Arkadiusz ;
Mroczka, Krzysztof ;
Tejchman, Waldemar ;
Danielewski, Marek ;
Martin, Manfred .
MATERIALS LETTERS, 2018, 216 :32-36
[6]  
Du HL, 2004, J MATER SCI-MATER EL, V15, P613
[7]   Structural study of an unusual cubic pyrochlore Bi1.5Zn0.92Nb1.5O6.92 [J].
Levin, I ;
Amos, TG ;
Nino, JC ;
Vanderah, TA ;
Randall, CA ;
Lanagan, MT .
JOURNAL OF SOLID STATE CHEMISTRY, 2002, 168 (01) :69-75
[8]   Progress and perspectives in dielectric energy storage ceramics [J].
Li, Dongxu ;
Zeng, Xiaojun ;
Li, Zhipeng ;
Shen, Zong-Yang ;
Hao, Hua ;
Luo, Wenqin ;
Wang, Xingcai ;
Song, Fusheng ;
Wang, Zhumei ;
Li, Yueming .
JOURNAL OF ADVANCED CERAMICS, 2021, 10 (04) :675-703
[9]   High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials [J].
Li, Fei ;
Zhou, Lin ;
Liu, Ji-Xuan ;
Liang, Yongcheng ;
Zhang, Guo-Jun .
JOURNAL OF ADVANCED CERAMICS, 2019, 8 (04) :576-582
[10]   High temperature electrical energy storage: advances, challenges, and frontiers [J].
Lin, Xinrong ;
Salari, Maryam ;
Arava, Leela Mohana Reddy ;
Ajayan, Pulickel M. ;
Grinstaff, Mark W. .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (21) :5848-5887