Bimodal approximation for anomalous diffusion in a potential

被引:12
作者
Kalmykov, YP
Coffey, WT
Titov, SV
机构
[1] Univ Perpignan, Grp Phys Mol, Lab Math & Phys Syst, F-66860 Perpignan, France
[2] Univ Dublin Trinity Coll, Dept Elect & Elect Engn, Dublin 2, Ireland
[3] Russian Acad Sci, Inst Radio Engn & Elect, Fryazino 141190, Moscow Region, Russia
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 02期
关键词
D O I
10.1103/PhysRevE.69.021105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Exact and approximate solutions of the fractional diffusion equation for an assembly of fixed-axis dipoles are derived for anomalous noninertial rotational diffusion in a double-well potential. It is shown that knowledge of three time constants characterizing the normal diffusion, viz., the integral relaxation time, the effective relaxation time, and the inverse of the smallest eigenvalue of the Fokker-Planck operator, is sufficient to accurately predict the anomalous relaxation behavior for all time scales of interest.
引用
收藏
页码:021105 / 1
页数:7
相关论文
共 24 条
[1]  
[Anonymous], LANGEVIN EQUATION AP
[2]  
[Anonymous], 1954, POLAR MOL
[3]   Anomalous diffusion and dielectric relaxation in an N-fold cosine potential -: art. no. 061115 [J].
Coffey, WT ;
Kalmykov, YP ;
Titov, SV .
PHYSICAL REVIEW E, 2003, 67 (06) :11-061115
[4]   EXACT SOLUTION FOR THE CORRELATION TIMES OF DIELECTRIC-RELAXATION OF A SINGLE AXIS ROTATOR WITH 2 EQUIVALENT SITES [J].
COFFEY, WT ;
KALMYKOV, YP ;
MASSAWE, ES ;
WALDRON, JT .
JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (05) :4011-4023
[5]   Anomalous dielectric relaxation in the context of the Debye model of noninertial rotational diffusion [J].
Coffey, WT ;
Kalmykov, YP ;
Titov, SV .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (15) :6422-6426
[6]   RANDOM MOTION OF A UNIAXIAL ROTATOR IN AN N-FOLD COSINE POTENTIAL - CORRELATION-FUNCTIONS AND NEUTRON INCOHERENT-SCATTERING LAW [J].
DIANOUX, AJ ;
VOLINO, F .
MOLECULAR PHYSICS, 1977, 34 (05) :1263-1277
[7]  
Frohlich H., 1958, THEORY DIELECTRICS
[8]  
GLOCKLE WG, 1991, MACROMOLECULES, V24, P6426
[9]  
HANGGI P, 1990, REV MOD PHYS, V62, P251, DOI 10.1103/RevModPhys.62.251
[10]   Evaluation of the smallest nonvanishing eigenvalue of the Fokker-Planck equation for Brownian motion in a potential: The continued fraction approach [J].
Kalmykov, YP .
PHYSICAL REVIEW E, 2000, 61 (06) :6320-6329