Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects

被引:31
|
作者
Deng, Fang [1 ,2 ]
Chen, Jie [1 ,2 ]
Chen, Chen [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Key Lab Intelligent Control & Decis Complex Syst, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
parameter estimation; state estimation; unscented Kalman filter (UKF); strong tracking filter; wavelet transform; SYSTEMS; ROBUST; NOISE;
D O I
10.1109/JSEE.2013.00076
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the time-varying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter (UKF) when the process noise is inaccuracy, and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise. An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF. Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method.
引用
收藏
页码:655 / 665
页数:11
相关论文
共 50 条
  • [41] A Performance Comparison Between Extended Kalman Filter and Unscented Kalman Filter in Power System Dynamic State Estimation
    Khazraj, Hesam
    da Silva, F. Faria
    Bak, Claus Leth
    2016 51ST INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE (UPEC), 2016,
  • [42] ADAPTIVE UNSCENTED KALMAN FILTER FOR ONLINE SOFT TISSUES CHARACTERIZATION
    Shin, Jaehyun
    Zhong, Yongmin
    Smith, Julian
    Gu, Chengfan
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2017, 17 (07)
  • [43] Combined state and parameter estimation for a landslide model using Kalman filter
    Mishra, Mohit
    Besancon, Gildas
    Chambon, Guillaume
    Baillet, Laurent
    IFAC PAPERSONLINE, 2021, 54 (07): : 304 - 309
  • [44] Parameter Estimation of Hammerstein-Wiener ARMAX Systems Using Unscented Kalman Filter
    Mazaheri, A.
    Mansouri, M.
    Shooredeli, M. A.
    2014 SECOND RSI/ISM INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM), 2014, : 298 - 303
  • [45] Unscented Kalman filter with advanced adaptation of scaling parameter
    Straka, Ondrej
    Dunik, Jindrich
    Simandl, Miroslav
    AUTOMATICA, 2014, 50 (10) : 2657 - 2664
  • [46] Electrochemical model-based state estimation for lithium-ion batteries with adaptive unscented Kalman filter
    Li, Weihan
    Fan, Yue
    Ringbeck, Florian
    Jost, Dominik
    Han, Xuebing
    Ouyang, Minggao
    Sauer, Dirk Uwe
    JOURNAL OF POWER SOURCES, 2020, 476
  • [47] Approximate conditional least squares estimation of a nonlinear state-space model via an unscented Kalman filter
    Ahn, Kwang Woo
    Chan, Kung-Sik
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 69 : 243 - 254
  • [48] Robust State Estimation With Maximum Correntropy Rotating Geometric Unscented Kalman Filter
    Chen, Shanmou
    Zhang, Qiangqiang
    Zhang, Tao
    Zhang, Lingcong
    Peng, Lina
    Wang, Shiyuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [49] State Estimation in a Hydraulically Actuated Log Crane Using Unscented Kalman Filter
    Khadim, Qasim
    Hagh, Yashar Shabbouei
    Pyrhonen, Lauri
    Jaiswal, Suraj
    Zhidchenko, Victor
    Kurvinen, Emil
    Sopanen, Jussi
    Mikkola, Aki
    Handroos, Heikki
    IEEE ACCESS, 2022, 10 : 62863 - 62878
  • [50] Robustness Evaluation of Extended and Unscented Kalman Filter for Battery State of Charge Estimation
    Huang, Chao
    Wang, Zhenhua
    Zhao, Zihan
    Wang, Long
    Lai, Chun Sing
    Wang, Dong
    IEEE ACCESS, 2018, 6 : 27617 - 27628