Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects

被引:31
|
作者
Deng, Fang [1 ,2 ]
Chen, Jie [1 ,2 ]
Chen, Chen [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Key Lab Intelligent Control & Decis Complex Syst, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
parameter estimation; state estimation; unscented Kalman filter (UKF); strong tracking filter; wavelet transform; SYSTEMS; ROBUST; NOISE;
D O I
10.1109/JSEE.2013.00076
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the time-varying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter (UKF) when the process noise is inaccuracy, and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise. An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF. Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method.
引用
收藏
页码:655 / 665
页数:11
相关论文
共 50 条
  • [31] State estimation of conceptual hydrological models using unscented Kalman filter
    Jiang, P.
    Sun, Y.
    Bao, W.
    HYDROLOGY RESEARCH, 2019, 50 (02): : 479 - 497
  • [32] Truncated Randomized Unscented Kalman Filter for Interval Constrained State Estimation
    Straka, Ondrej
    Dunik, Jindrich
    Simandl, Miroslav
    Havlik, Jindrich
    2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 2081 - 2088
  • [33] Unscented Kalman filter state estimation for manipulating unmanned aerial vehicles
    Khamseh, H. Bonyan
    Ghorbani, S.
    Janabi-Sharifi, F.
    AEROSPACE SCIENCE AND TECHNOLOGY, 2019, 92 : 446 - 463
  • [34] Unscented Kalman filter with performance recovery strategy for parameter estimation of isolation structures
    He, Xinhao
    Unjoh, Shigeki
    Li, Dan
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (12)
  • [35] The Simple Solution for Nonlinear State Estimation of Ill-Conditioned Systems: The Normalized Unscented Kalman Filter
    Krog, Halvor Aarnes
    Jaschke, Johannes
    IFAC PAPERSONLINE, 2023, 56 (02): : 5951 - +
  • [36] Adaptive square-root unscented Kalman filter: An experimental study of hydraulic actuator state estimation
    Asl, Reza Mohammadi
    Hagh, Yashar Shabbouei
    Simani, Silvio
    Handroos, Heikki
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 132 : 670 - 691
  • [37] Optimized adaptive filtering for fault estimation of the dynamics of high-speed train based on robust extended Kalman filter
    Liang, Tiantian
    Li, Kexin
    Wang, Yingdong
    Wang, Mao
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (14) : 2688 - 2711
  • [38] Nonlinear State and Parameter Estimation using Discrete-Time Double Kalman Filter
    Abdollahpouri, Mohammad
    Haring, Mark
    Johansen, Tor Arne
    Takacs, Gergely
    Rohar-Ilkiv, Boris
    IFAC PAPERSONLINE, 2017, 50 (01): : 11632 - 11638
  • [39] Performance Monitoring of Nonlinear CSTR Using Novel Adaptive Unscented Kalman Filter
    Jargani, Lotfollah
    Shahbazian, Mehdi
    Salashoor, Karim
    Fathabadi, Vahid
    WCECS 2009: WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, VOLS I AND II, 2009, : 909 - 915
  • [40] Estimation of Rotary Inverted Pendulum by using the Unscented Kalman Filter - Estimation of the initial state
    Zheng, Min
    Ikeda, Kenji
    Shimomura, Takao
    PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-8, 2007, : 1665 - 1668