Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects

被引:31
|
作者
Deng, Fang [1 ,2 ]
Chen, Jie [1 ,2 ]
Chen, Chen [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Key Lab Intelligent Control & Decis Complex Syst, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
parameter estimation; state estimation; unscented Kalman filter (UKF); strong tracking filter; wavelet transform; SYSTEMS; ROBUST; NOISE;
D O I
10.1109/JSEE.2013.00076
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the time-varying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter (UKF) when the process noise is inaccuracy, and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise. An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF. Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method.
引用
收藏
页码:655 / 665
页数:11
相关论文
共 50 条
  • [21] Unscented Kalman filtering for spacecraft attitude state and parameter estimation
    VanDyke, MC
    Schwartz, JL
    Hall, CD
    Spaceflight Mechanics 2004, Vol 119, Pt 1-3, 2005, 119 : 217 - 228
  • [22] Applications of square root Unscented Kalman Filter on the state estimation
    Peng Yun-hui
    Miao Dong
    Liu Yun-feng
    Proceedings of 2006 Chinese Control and Decision Conference, 2006, : 53 - 56
  • [23] Real-time train motion parameter estimation using an Unscented Kalman Filter
    Cunillera, Alex
    Besinovic, Nikola
    van Oort, Niels
    Goverde, Rob M. P.
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2022, 143
  • [24] State/Parameter Identification in Cancerous Models Using Unscented Kalman Filter
    Khalili, Pariya
    Vatankhah, Ramin
    Arefi, Mohammad Mehdi
    CYBERNETICS AND SYSTEMS, 2024, 55 (08) : 2464 - 2488
  • [25] New Weighted Adaptive Unscented Kalman Filter for Estimation of Hydraulic Systems
    Asl, Reza Mohammadi
    Handroos, Heikki
    2018 GLOBAL FLUID POWER SOCIETY PHD SYMPOSIUM (GFPS), 2018,
  • [26] A dynamic load estimation method for nonlinear structures with unscented Kalman filter
    Guo, L. N.
    Ding, Y.
    Wang, Z.
    Xu, G. S.
    Wu, B.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 101 : 254 - 273
  • [27] Fuzzy-Based Parameter Optimization of Adaptive Unscented Kalman Filter: Methodology and Experimental Validation
    Asl, Reza Mohammadi
    Palm, Rainer
    Wu, Huapeng
    Handroos, Heikki
    IEEE ACCESS, 2020, 8 : 54887 - 54904
  • [28] State and Parameter Estimation of Photovoltaic Modules using Unscented Kalman Filters
    González-Cagigal M.Á.
    Rosendo-Macías J.A.
    Gómez-Expósito A.
    Renewable Energy and Power Quality Journal, 2022, 20 : 126 - 131
  • [29] UNSCENTED KALMAN FILTER BASED NONLINEAR STATE ESTIMATION CASE STUDY - NONLINEAR PROCESS CONTROL REACTOR (CONTINUOUS STIRRED TANK REACTOR)
    Shyamalagowri, M.
    Rajeswari, R.
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL (ISCO'16), 2016,
  • [30] State Estimation of Induction Motor Drives Using the Unscented Kalman Filter
    Jafarzadeh, Saeed
    Lascu, Cristian
    Fadali, M. Sami
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2012, 59 (11) : 4207 - 4216