Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects

被引:31
|
作者
Deng, Fang [1 ,2 ]
Chen, Jie [1 ,2 ]
Chen, Chen [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Key Lab Intelligent Control & Decis Complex Syst, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
parameter estimation; state estimation; unscented Kalman filter (UKF); strong tracking filter; wavelet transform; SYSTEMS; ROBUST; NOISE;
D O I
10.1109/JSEE.2013.00076
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the time-varying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter (UKF) when the process noise is inaccuracy, and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise. An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF. Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method.
引用
收藏
页码:655 / 665
页数:11
相关论文
共 50 条
  • [11] State Estimation in Nonlinear Model Predictive Control, Unscented Kalman Filter Advantages
    Marafioti, Giancarlo
    Olaru, Sorin
    Hovd, Morten
    NONLINEAR MODEL PREDICTIVE CONTROL: TOWARDS NEW CHALLENGING APPLICATIONS, 2009, 384 : 305 - +
  • [12] Modified strong tracking unscented Kalman filter for nonlinear state estimation with process model uncertainty
    Hu, Gaoge
    Gao, Shesheng
    Zhong, Yongmin
    Gao, Bingbing
    Subic, Aleksandar
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2015, 29 (12) : 1561 - 1577
  • [13] Variational Bayesian Unscented Kalman Filter for Active Distribution System State Estimation
    Cetenovic, Dragan
    Zhao, Junbo
    Levi, Victor
    Liu, Yitong
    Terzija, Vladimir
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2025, 40 (01) : 476 - 491
  • [14] Unscented Kalman Filter: Aspects and Adaptive Setting of Scaling Parameter
    Dunik, Jindrich
    Simandl, Miroslav
    Straka, Ondrej
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (09) : 2411 - 2416
  • [15] Parameter Estimation of Biological Phenomena: An Unscented Kalman Filter Approach
    Meskin, N.
    Nounou, H.
    Nounou, M.
    Datta, A.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2013, 10 (02) : 537 - 543
  • [16] An adaptive unscented Kalman filter approach to secure state estimation for wireless sensor networks
    Miao, Kelei
    Zhang, Wen-An
    Qiu, Xiang
    ASIAN JOURNAL OF CONTROL, 2023, 25 (01) : 629 - 636
  • [17] State of charge estimation of lithium battery based on Dual Adaptive Unscented Kalman Filter
    Zhang, Peng
    Xie, Changjun
    Dong, Shibao
    2018 IEEE INTERNATIONAL POWER ELECTRONICS AND APPLICATION CONFERENCE AND EXPOSITION (PEAC), 2018, : 2174 - 2179
  • [18] Speed Estimation Method of Permanent Magnet Synchronous Motor Based on Adaptive Unscented Kalman Filter
    Yin, Zhonggang
    Gao, Fengtao
    Zhang, Yanping
    Hou, Jie
    2018 IEEE INTERNATIONAL POWER ELECTRONICS AND APPLICATION CONFERENCE AND EXPOSITION (PEAC), 2018, : 173 - 178
  • [19] Parameter and state estimation of backers yeast cultivation with a gas sensor array and unscented Kalman filter
    Yousefi-Darani, Abdolrahimahim
    Paquet-Durand, Olivier
    Hinrichs, Jorg
    Hitzmann, Bernd
    ENGINEERING IN LIFE SCIENCES, 2021, 21 (3-4): : 170 - 180
  • [20] Adaptive Precise Attitude Estimation Using Unscented Kalman Filter in High Dynamics Environments
    Hassaballa, Ahmed H.
    Kamel, Ahmed M.
    Arafa, I.
    Elhalwagy, Yehia Z.
    UNMANNED SYSTEMS, 2024, 12 (04) : 653 - 665