Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects

被引:31
|
作者
Deng, Fang [1 ,2 ]
Chen, Jie [1 ,2 ]
Chen, Chen [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Key Lab Intelligent Control & Decis Complex Syst, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
parameter estimation; state estimation; unscented Kalman filter (UKF); strong tracking filter; wavelet transform; SYSTEMS; ROBUST; NOISE;
D O I
10.1109/JSEE.2013.00076
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the time-varying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter (UKF) when the process noise is inaccuracy, and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise. An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF. Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method.
引用
收藏
页码:655 / 665
页数:11
相关论文
共 50 条
  • [1] Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects
    Fang Deng
    Jie Chen
    Chen Chen
    JournalofSystemsEngineeringandElectronics, 2013, 24 (04) : 655 - 665
  • [2] Aerodynamic parameter estimation using adaptive unscented Kalman filter
    Majeed, M.
    Kar, Indra Narayan
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2013, 85 (04) : 267 - 279
  • [3] State Estimation of Nonlinear Systems Using Novel Adaptive Unscented Kalman Filter
    Jargani, Lotfollah
    Shahbazian, Mehdi
    Salahshoor, Karim
    Fathabadi, Vahid
    ICET: 2009 INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES, PROCEEDINGS, 2009, : 124 - 129
  • [4] An Enhanced Adaptive Unscented Kalman Filter for Vehicle State Estimation
    Zhang, Yingjie
    Li, Ming
    Zhang, Ying
    Hu, Zuolei
    Sun, Qingshuai
    Lu, Biliang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [5] USV Parameter Estimation: Adaptive Unscented Kalman Filter-Based Approach
    Shen, Han
    Wen, Guanghui
    Lv, Yuezu
    Zhou, Jun
    Wang, Linan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (06) : 7751 - 7761
  • [6] Generalizing the Unscented Kalman Filter for State Estimation
    Butler, Quade
    Hilal, Waleed
    Sicard, Brett
    Ziada, Youssef
    Gadsden, S. Andrew
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXXII, 2023, 12547
  • [7] Unscented Kalman Filter Based State and Parameter Estimation in Percussive Drilling Systems
    Song, Xianfeng
    Kane, Pascal-Alexandre
    Abooshahab, Mohanunad Ali
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 2149 - 2154
  • [8] Unscented Kalman filter for vehicle state estimation
    Antonov, S.
    Fehn, A.
    Kugi, A.
    VEHICLE SYSTEM DYNAMICS, 2011, 49 (09) : 1497 - 1520
  • [9] A Method for State of Charge and State of Health Estimation of LithiumBatteries Based on an Adaptive Weighting Unscented Kalman Filter
    Fang, Fengyuan
    Ma, Caiqing
    Ji, Yan
    ENERGIES, 2024, 17 (09)
  • [10] An Integrated Adaptive Kalman Filter for High-Speed UAVs
    Huang, Tiantian
    Jiang, Hui
    Zou, Zhuoyang
    Ye, Lingyun
    Song, Kaichen
    APPLIED SCIENCES-BASEL, 2019, 9 (09):