The thermal structure of Titan's upper atmosphere, I: Temperature profiles from Cassini INMS observations

被引:68
作者
Snowden, D. [1 ]
Yelle, R. V. [1 ]
Cui, J. [2 ]
Wahlund, J-E. [3 ]
Edberg, N. J. T. [3 ]
Agren, K. [3 ]
机构
[1] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA
[2] Nanjing Univ, Dept Astron, Nanjing 210008, Jiangsu, Peoples R China
[3] Swedish Inst Phys, Uppsala, Sweden
关键词
Titan; atmosphere; Aeronomy; Atmospheres; structure; NEUTRAL MASS-SPECTROMETER; MAGNETOMETER OBSERVATIONS; PICKUP IONS; THERMOSPHERE; DYNAMICS; ESCAPE; PHOTOCHEMISTRY; IONOSPHERE; MOLECULES; NITROGEN;
D O I
10.1016/j.icarus.2013.06.006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive vertical temperature profiles from Ion Neutral Mass Spectrometer (INMS) N-2 density measurements from 32 Cassini passes. We find that the average temperature of Titan's thermosphere varies significantly from pass-to-pass between 112 and 175 K. The temperatures from individual temperature profiles also varies considerably, with many passes exhibiting wave-like temperature perturbations and large temperature gradients. Wave-like temperature perturbations have wavelengths between 150 and 420 km and amplitudes between 3% and 22% and vertical wave power spectra of the INMS data and HASI data have a slope between -2 and -3, which is consistent with vertically propagating atmospheric waves. The lack of a strong correlation between temperature and latitude, longitude, solar zenith angle, or local solar time indicates that the thermal structure of Titan's thermosphere is not primarily determined by the absorption of solar EUV flux. At N-2 densities greater than 10(8) cm(-3), Titan's thermosphere is colder when Titan is observed in Saturn's magnetospheric lobes compared to Saturn's plasma sheet as proposed by Westlake et al. (Westlake, J.H. et al. [2011]. J. Geophys. Res. 116, A03318. http://dx.doi.org/10.1029/2010JA016251). This apparent correlation suggests that magnetospheric particle precipitation causes the temperature variability in Titan's thermosphere; however, at densities smaller than 10(8) cm(-3) the lobe passes are hotter than the plasma sheet passes and we find no correlation between the temperature of Titan's thermosphere and ionospheric signatures of enhanced particle precipitation, which suggests that the correlation is not indicative of a physical connection. The temperature of Titan's thermosphere also may have decreased by similar to 10 K around mid-2007. Finally, we classify the vertical temperature profiles to show which passes are hot and cold and which passes have the largest temperature variations. In a companion paper (Part II), we estimate the strength of energy sources and sinks in Titan's thermosphere. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:552 / 582
页数:31
相关论文
共 94 条
[1]   Titan's middle-atmospheric temperatures and dynamics observed by the Cassini Composite Infrared Spectrometer [J].
Achterberg, Richard K. ;
Conrath, Barney J. ;
Gierasch, Peter J. ;
Flasar, E. Michael ;
Nixon, Conor A. .
ICARUS, 2008, 194 (01) :263-277
[2]   Detection of negative ions in the deep ionosphere of Titan during the Cassini T70 flyby [J].
Agren, K. ;
Edberg, N. J. T. ;
Wahlund, J. -E. .
GEOPHYSICAL RESEARCH LETTERS, 2012, 39
[3]   On the ionospheric structure of Titan [J].
Agren, K. ;
Wahlund, J. -E. ;
Garnier, P. ;
Modolo, R. ;
Cui, J. ;
Galand, M. ;
Mueller-Wodarg, I. .
PLANETARY AND SPACE SCIENCE, 2009, 57 (14-15) :1821-1827
[4]   Titan airglow spectra from Cassini Ultraviolet Imaging Spectrograph (UVIS): EUV analysis [J].
Ajello, Joseph M. ;
Stevens, Michael H. ;
Stewart, Ian ;
Larsen, Kristopher ;
Esposito, Larry ;
Colwell, Josh ;
McClintock, William ;
Holsclaw, Greg ;
Gustin, Jacques ;
Pryor, Wayne .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (24)
[5]   Upstream of Saturn and Titan [J].
Arridge, C. S. ;
Andre, N. ;
Bertucci, C. L. ;
Garnier, P. ;
Jackman, C. M. ;
Nemeth, Z. ;
Rymer, A. M. ;
Sergis, N. ;
Szego, K. ;
Coates, A. J. ;
Crary, F. J. .
SPACE SCIENCE REVIEWS, 2011, 162 (1-4) :25-83
[6]   A coupled model of Titan's atmosphere and ionosphere [J].
Banaszkiewicz, M ;
Lara, LM ;
Rodrigo, R ;
López-Moreno, JJ ;
Molina-Cuberos, GJ .
ICARUS, 2000, 147 (02) :386-404
[7]   Simulating the one-dimensional structure of Titan's upper atmosphere: 3. Mechanisms determining methane escape [J].
Bell, Jared M. ;
Bougher, Stephen W. ;
Waite, J. Hunter, Jr. ;
Ridley, Aaron J. ;
Magee, Brian A. ;
Mandt, Kathleen E. ;
Westlake, Joseph ;
DeJong, Anna D. ;
Bar-Nun, Akiva ;
Jacovi, Ronen ;
Toth, Gabor ;
De la Haye, Virginie ;
Gell, David ;
Fletcher, Gregory .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2011, 116
[8]   Simulating the time-dependent response of Titan's upper atmosphere to periods of magnetospheric forcing [J].
Bell, Jared M. ;
Westlake, Joseph ;
Waite, J. Hunter, Jr. .
GEOPHYSICAL RESEARCH LETTERS, 2011, 38
[9]   Simulating the one-dimensional structure of Titan's upper atmosphere: 1. Formulation of the Titan Global Ionosphere-Thermosphere Model and benchmark simulations [J].
Bell, Jared M. ;
Bougher, Stephen W. ;
Waite, J. Hunter, Jr. ;
Ridley, Aaron J. ;
Magee, Brian A. ;
Mandt, Kathleen E. ;
Westlake, Joseph ;
DeJong, Anna D. ;
Bar-Nun, Akiva ;
Jacovi, Ronen ;
Toth, Gabor ;
De La Haye, Virginie .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2010, 115
[10]   The variability of Titan's magnetic environment [J].
Bertucci, C. ;
Sinclair, B. ;
Achilleos, N. ;
Hunt, P. ;
Dougherty, M. K. ;
Arridge, C. S. .
PLANETARY AND SPACE SCIENCE, 2009, 57 (14-15) :1813-1820