PFP-PCA: Parallel Fixed Point PCA Face Recognition

被引:9
作者
Rujirakul, Kanokmon [1 ]
So-In, Chakchai [1 ]
Arnonkijpanich, Banchar [2 ]
Sunat, Khamron [1 ]
Poolsanguan, Sarayut [1 ]
机构
[1] Khon Kaen Univ, Dept Comp Sci, Fac Sci, Khon Kaen 40002, Thailand
[2] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
来源
FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, MODELLING AND SIMULATION (ISMS 2013) | 2013年
关键词
Fast Parallel PCA; Face Recognition; Fixed Point; Parallel Face Recognition; PFP-PCA; Parallel Fixed Point PCA Face Recognition; Principal Component Analysis; PCA;
D O I
10.1109/ISMS.2013.38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With a high computational complexity of Eigenvector/Eigenvalue calculation, especially with a large database, of a traditional face recognition system, PCA, this paper proposes an alternative approach to utilize a fixed point algorithm for EVD stage optimization. We also proposed the optimization to reduce the complexity during the high computation stage, covariance matrix manipulation. In addition, the feasibility to enhance the speed-up over a single-core computation, parallelism, was investigated on the huge matrix calculation on both grayscale and RGB images. This mechanism, the so-called Parallel Fixed Point PCA (PFP-PCA), results in higher accuracy and lower complexity compared to the traditional PCA leading to a high speed face recognition system.
引用
收藏
页码:409 / 414
页数:6
相关论文
共 24 条
[1]  
[Anonymous], J INFORM PROCESSING
[2]  
Arya KV, 2008, IEEE SYS MAN CYBERN, P1331
[3]  
Bingham E, 2000, Int J Neural Syst, V10, P1, DOI 10.1142/S0129065700000028
[4]  
Chan L.-H., 2008, P INT S INF TECHNOL, V2, P1, DOI [10.1109/ITSIM.2008, DOI 10.1109/ITSIM.2008]
[5]   Parallel object recognition on an FPGA-based configurable computing platform [J].
Chung, YW ;
Choi, S ;
Prasanna, VK .
CAMP'97 - FOURTH IEEE INTERNATIONAL WORKSHOP ON COMPUTER ARCHITECTURE FOR MACHINE PERCEPTION, PROCEEDINGS, 1997, :143-152
[6]  
Cordes D, 2012, DES AUT TEST EUROPE, P394
[7]   Independent comparative study of PCA, ICA, and LDA on the FERET data set [J].
Delac, K ;
Grgic, M ;
Grgic, S .
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2005, 15 (05) :252-260
[8]  
Gao J., 2012, WSEAS T MATH, V11, P728
[9]   Parallelizing Principal Component Analysis for Robust Facial Recognition using CUDA [J].
Goodall, Todd ;
Gibson, Scott ;
Smith, Melissa C. .
2012 SYMPOSIUM ON APPLICATION ACCELERATORS IN HIGH PERFORMANCE COMPUTING (SAAHPC), 2012, :121-124
[10]  
Hu Y., 2010, P IEEE C DEP COMP, P421