Trojan Attacks on Wireless Signal Classification with Adversarial Machine Learning

被引:35
|
作者
Davaslioglu, Kemal [1 ]
Sagduyu, Yalin E. [1 ]
机构
[1] Intelligent Automat Inc, Rockville, MD 20855 USA
关键词
Deep learning; Trojan attacks; signal classification; adversarial machine learning;
D O I
10.1109/dyspan.2019.8935782
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present a Trojan (backdoor or trapdoor) attack that targets deep learning applications in wireless communications. A deep learning classifier is considered to classify wireless signals using raw (I/Q) samples as features and modulation types as labels. An adversary slightly manipulates training data by inserting Trojans (i.e., triggers) to only few training data samples by modifying their phases and changing the labels of these samples to a target label. This poisoned training data is used to train the deep learning classifier. In test (inference) time, an adversary transmits signals with the same phase shift that was added as a trigger during training. While the receiver can accurately classify clean (unpoisoned) signals without triggers, it cannot reliably classify signals poisoned with triggers. This stealth attack remains hidden until activated by poisoned inputs (Trojans) to bypass a signal classifier (e.g., for authentication). We show that this attack is successful over different channel conditions and cannot be mitigated by simply preprocessing the training and test data with random phase variations. To detect this attack, activation based outlier detection is considered with statistical as well as clustering techniques. We show that the latter one can detect Trojan attacks even if few samples are poisoned.
引用
收藏
页码:515 / 520
页数:6
相关论文
共 50 条
  • [1] Darknet traffic classification and adversarial attacks using machine learning
    Rust-Nguyen, Nhien
    Sharma, Shruti
    Stamp, Mark
    COMPUTERS & SECURITY, 2023, 127
  • [2] Adversarial Attacks on Deep-Learning Based Radio Signal Classification
    Sadeghi, Meysam
    Larsson, Erik G.
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (01) : 213 - 216
  • [3] Adversarial Machine Learning Attacks on Multiclass Classification of IoT Network Traffic
    Pantelakis, Vasileios
    Bountakas, Panagiotis
    Farao, Aristeidis
    Xenakis, Christos
    18TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY & SECURITY, ARES 2023, 2023,
  • [4] Adversarial attacks on medical machine learning
    Finlayson, Samuel G.
    Bowers, John D.
    Ito, Joichi
    Zittrain, Jonathan L.
    Beam, Andrew L.
    Kohane, Isaac S.
    SCIENCE, 2019, 363 (6433) : 1287 - 1289
  • [5] Enablers Of Adversarial Attacks in Machine Learning
    Izmailov, Rauf
    Sugrim, Shridatt
    Chadha, Ritu
    McDaniel, Patrick
    Swami, Ananthram
    2018 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2018), 2018, : 425 - 430
  • [6] Stealthy Adversarial Attacks on Machine Learning-Based Classifiers of Wireless Signals
    Zhang, Wenhan
    Krunz, Marwan
    Ditzler, Gregory
    IEEE Transactions on Machine Learning in Communications and Networking, 2024, 2 : 261 - 279
  • [7] Minimum Power Adversarial Attacks in Communication Signal Modulation Classification with Deep Learning
    Ke, Da
    Wang, Xiang
    Huang, Kaizhu
    Wang, Haoyuan
    Huang, Zhitao
    COGNITIVE COMPUTATION, 2023, 15 (02) : 580 - 589
  • [8] Minimum Power Adversarial Attacks in Communication Signal Modulation Classification with Deep Learning
    Da Ke
    Xiang Wang
    Kaizhu Huang
    Haoyuan Wang
    Zhitao Huang
    Cognitive Computation, 2023, 15 : 580 - 589
  • [9] Adversarial Machine Learning and Defense Game for NextG Signal Classification with Deep Learning
    Sagduyu, Yalin E.
    arXiv, 2022,
  • [10] Adversarial Machine Learning and Defense Game for NextG Signal Classification with Deep Learning
    Sagduyu, Yalin E.
    2022 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2022,