Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation

被引:22
作者
Bigolin, F. [1 ]
Caravenna, L. [2 ]
Cassano, F. Serra [1 ]
机构
[1] Dipartimento Matemat Trento, I-38123 Trento, Italy
[2] Univ Oxford, Math Inst, OxPDE, 24-29 St Giles, Oxford OX1 3LB, England
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2015年 / 32卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
Intrinsic Lipschitz graphs; Heisenberg groups; Lagrangian formulation; Scalar balance laws; Continuous solutions; Peano phenomenon; IMPLICIT FUNCTION THEOREM; REGULAR HYPERSURFACES; RECTIFIABILITY; PERIMETER;
D O I
10.1016/j.anihpc.2014.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a characterization of intrinsic Lipschitz graphs in the sub-Riemannian Heisenberg groups in terms of their distributional gradients. Moreover, we prove the equivalence of different notions of continuous weak solutions to the equation partial derivative phi/partial derivative z+partial derivative/partial derivative t[phi(2)/2] = w, where w is a bounded measurable function. CD 2014 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:925 / 963
页数:39
相关论文
共 28 条
[1]   Eulerian, Lagrangian and Broad continuous solutions to a balance law with non-convex flux I [J].
Alberti, G. ;
Bianchini, S. ;
Caravenna, L. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (08) :4298-4337
[2]  
Alberti G, 2014, AIMS SER APPL MATH, V8, P399
[3]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[4]   Intrinsic regular hypersurfaces in Heisenberg groups [J].
Ambrosio, Luigi ;
Cassano, Francesco Serra ;
Vittone, Davide .
JOURNAL OF GEOMETRIC ANALYSIS, 2006, 16 (02) :187-232
[5]  
[Anonymous], 2002, MATH SURVEYS MONOGRA
[6]  
Bigolin F., 2010, INTRINSIC REGULAR HY
[7]   Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non-linear first-order PDEs [J].
Bigolin, Francesco ;
Cassano, Francesco Serra .
ADVANCES IN CALCULUS OF VARIATIONS, 2010, 3 (01) :69-97
[8]   Distributional solutions of Burgers' equation and intrinsic regular graphs in Heisenberg groups [J].
Bigolin, Francesco ;
Cassano, Francesco Serra .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (02) :561-568
[9]  
Capogna L., 2007, PROG MATH, V259
[10]   Differentiating maps into L1, and the geometry of BV functions [J].
Cheeger, Jeff ;
Kleiner, Bruce .
ANNALS OF MATHEMATICS, 2010, 171 (02) :1347-1385