2-Group symmetries and M-theory

被引:37
|
作者
Del Zotto, Michele [1 ,2 ]
Garcia-Etxebarria, Inaki [3 ]
Schafer-Nameki, Sakura [4 ]
机构
[1] Uppsala Univ, Math Inst, Box 480, SE-75106 Uppsala, Sweden
[2] Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden
[3] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[4] Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
来源
SCIPOST PHYSICS | 2022年 / 13卷 / 05期
基金
欧洲研究理事会;
关键词
D O I
10.21468/SciPostPhys.13.5.105
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum Field Theories engineered in M-theory can have 2-group symmetries, mixing 0-form and 1-form symmetry backgrounds in non-trivial ways. In this paper we develop methods for determining the 2-group structure from the boundary geometry of the Mtheory background. We illustrate these methods in the case of 5d theories arising from Mtheory on ordinary and generalised toric Calabi-Yau cones, including cases in which the resulting theory is non-Lagrangian. Our results confirm and elucidate previous results on 2-groups from geometric engineering.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] M-theory and N=2 strings
    Martinec, E
    STRINGS, BRANES AND DUALITIES, 1999, 520 : 241 - 265
  • [42] Quantum Symmetries: From Clifford and Hurwitz Algebras to M-Theory and Leech Lattices
    Catto, Sultan
    Gurcan, Yasemin
    Khalfan, Amish
    Kurt, Levent
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2018, 28 (04)
  • [43] Quantum Symmetries: From Clifford and Hurwitz Algebras to M-Theory and Leech Lattices
    Sultan Catto
    Yasemin Gürcan
    Amish Khalfan
    Levent Kurt
    Advances in Applied Clifford Algebras, 2018, 28
  • [44] 2-GROUP NEUTRON TRANSPORT THEORY WITH ANISOTROPIC SCATTERING
    THIELEHE.KO
    CLAUSSEN, K
    ZEITSCHRIFT FUR NATURFORSCHUNG PART A-ASTROPHYSIK PHYSIK UND PHYSIKALISCHE CHEMIE, 1970, A 25 (05): : 587 - &
  • [45] 2-GROUP NEUTRON TRANSPORT THEORY IN SPHERICAL GEOMETRY
    SCHNATZ, TW
    SIEWERT, CE
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1969, 12 (02): : 638 - &
  • [46] A VARIATIONAL METHOD IN 2-GROUP TRANSPORT-THEORY
    BLENSKI, T
    JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (05) : 1118 - 1125
  • [47] Hamiltonian analysis of the BFCG theory for the Poincare 2-group
    Mikovic, A.
    Oliveira, M. A.
    Vojinovic, M.
    CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (06)
  • [48] AUTOMORPHISM GROUP OF A 2-GROUP
    HAWKES, T
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1973, 26 (MAR) : 207 - 225
  • [49] EIGENFUNCTION EXPANSION METHOD IN 2-GROUP TRANSPORT THEORY
    BARAN, W
    NUKLEONIK, 1968, 11 (01): : 10 - &
  • [50] 2-REGION 2-GROUP THEORY FOR HAND CALCULATIONS
    EMON, DE
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1966, 9 (02): : 605 - +