2-Group symmetries and M-theory

被引:37
|
作者
Del Zotto, Michele [1 ,2 ]
Garcia-Etxebarria, Inaki [3 ]
Schafer-Nameki, Sakura [4 ]
机构
[1] Uppsala Univ, Math Inst, Box 480, SE-75106 Uppsala, Sweden
[2] Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden
[3] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[4] Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
来源
SCIPOST PHYSICS | 2022年 / 13卷 / 05期
基金
欧洲研究理事会;
关键词
D O I
10.21468/SciPostPhys.13.5.105
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum Field Theories engineered in M-theory can have 2-group symmetries, mixing 0-form and 1-form symmetry backgrounds in non-trivial ways. In this paper we develop methods for determining the 2-group structure from the boundary geometry of the Mtheory background. We illustrate these methods in the case of 5d theories arising from Mtheory on ordinary and generalised toric Calabi-Yau cones, including cases in which the resulting theory is non-Lagrangian. Our results confirm and elucidate previous results on 2-groups from geometric engineering.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Borcherds symmetries in M-theory -: art. no. 049
    Henry-Labordère, P
    Julia, B
    Paulot, L
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (04):
  • [32] On M-theory and the symmetries of type II string effective actions
    Das, A
    Roy, S
    NUCLEAR PHYSICS B, 1996, 482 (1-2) : 119 - 141
  • [33] NOTE ON 2-GROUP TRANSPORT THEORY
    THIELHEIM, KO
    BLOCKER, W
    ZEITSCHRIFT FUR PHYSIK, 1969, 221 (01): : 9 - +
  • [34] The global form of flavor symmetries and 2-group symmetries in 5d SCFTs
    Apruzzi, Fabio
    Schafer-Nameki, Sakura
    Bhardwaj, Lakshya
    Oh, Jihwan
    SCIPOST PHYSICS, 2022, 13 (02):
  • [35] 2-GROUP PERTURBATION THEORY IN NEUTRON TRANSPORT THEORY
    TAIT, JH
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION A, 1954, 67 (415): : 615 - 621
  • [36] On M-theory
    Nicolai, H
    JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 1999, 20 (3-4) : 149 - 164
  • [37] GROUP THEORY OF BINARY VECTORS OF 2-GROUP DIFFUSION EQUATIONS
    LEDINEGG, E
    ACTA PHYSICA AUSTRIACA, 1971, 33 (3-4): : 231 - &
  • [38] M-theory
    Polkinghorne, John
    TLS-THE TIMES LITERARY SUPPLEMENT, 2010, (5620): : 6 - 6
  • [39] On M-Theory
    Hermann Nicolai
    Journal of Astrophysics and Astronomy, 1999, 20 : 149 - 164
  • [40] On M-theory
    Nicolai, H
    THEORY OF ELEMENTARY PARTICLES, 1998, : 448 - 465