Predicting Financial Time Series Data Using Hybrid Model

被引:12
|
作者
Al-hnaity, Bashar [1 ]
Abbod, Maysam [1 ]
机构
[1] Brunel Univ, Dept Elect & Comp Engn, London UB8 3PH, England
来源
INTELLIGENT SYSTEMS AND APPLICATIONS | 2016年 / 650卷
关键词
ARTIFICIAL NEURAL-NETWORKS; SUPPORT VECTOR REGRESSION; ARIMA; PARAMETERS; FORECASTS;
D O I
10.1007/978-3-319-33386-1_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prediction of financial time series is described as one of the most challenging tasks of time series prediction, due to its characteristics and their dynamic nature. Support vector regression (SVR), Support vector machine (SVM) and back propagation neural network (BPNN) are the most popular data mining techniques in prediction financial time series. In this paper a hybrid combination model is introduced to combine the three models and to be most beneficial of them all. Quantization factor is used in this paper for the first time to improve the single SVM and SVR prediction output. And also genetic algorithm (GA) used to determine the weights of the proposed model. FTSE100, S&P 500 and Nikkei 225 daily index closing prices are used to evaluate the proposed model performance. The proposed hybrid model numerical results shows the outperform result over all other single model, traditional simple average combiner and the traditional time series model Autoregressive (AR).
引用
收藏
页码:19 / 41
页数:23
相关论文
共 50 条
  • [1] A new hybrid financial time series prediction model
    Alhnaity, Bashar
    Abbod, Maysam
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 95
  • [2] A Hybrid Financial Time Series Model Based on Neural Networks
    Ma, Chi
    Liu, Junnan
    Sun, Hongyan
    Jin, Haibin
    2017 EIGHTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2017, : 303 - 308
  • [3] Time series forecasting model using a hybrid ARIMA and neural network
    Zou, Haofei
    Yang, Fangfing
    Xia, Guoping
    PROCEEDINGS OF THE 2005 CONFERENCE OF SYSTEM DYNAMICS AND MANAGEMENT SCIENCE, VOL 2: SUSTAINABLE DEVELOPMENT OF ASIA PACIFIC, 2005, : 934 - 939
  • [4] Forecasting of wheat production in Haryana using hybrid time series model
    Devi, Monika
    Kumar, Joginder
    Malik, D. P.
    Mishra, Pradeep
    JOURNAL OF AGRICULTURE AND FOOD RESEARCH, 2021, 5
  • [5] Time series forecasting using a hybrid ARIMA and neural network model
    Zhang, GP
    NEUROCOMPUTING, 2003, 50 : 159 - 175
  • [6] A Hybrid Approach for Modeling Financial Time Series
    Barbulescu, Alina
    Bautu, Elena
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2012, 9 (04) : 327 - 335
  • [7] A Novel Hybrid Intelligent Model for Financial Time Series Forecasting and Its Application
    Wang, Wei
    Zhao, Hong
    Li, Qiang
    Liu, Zhixiong
    2009 INTERNATIONAL CONFERENCE ON BUSINESS INTELLIGENCE AND FINANCIAL ENGINEERING, PROCEEDINGS, 2009, : 279 - 282
  • [8] TIME SERIES FORECASTING USING A MODIFIED HYBRID MODEL
    Ashour, Marwan Abdul Hameed
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 : 1407 - 1413
  • [9] Hybrid Approaches in Financial Time Series Forecasting: A Stock Market Application
    Bulut, Canberk
    Hudaverdi, Burcu
    EKOIST-JOURNAL OF ECONOMETRICS AND STATISTICS, 2022, (37): : 53 - 68
  • [10] Predicting FTSE 100 Close Price using Hybrid Model
    Al-hnaity, Bashar
    Abbod, Maysam
    Alar'raj, Maher
    2015 SAI INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), 2015, : 49 - 54