Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae

被引:146
作者
Dodson, Stephanie [1 ]
Haggui, Mohamed [2 ]
Bachelot, Renaud [2 ]
Plain, Jerome [2 ]
Li, Shuzhou [3 ]
Xiong, Qihua [1 ,4 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[2] Univ Technol Troyes, ICD, Lab Nanotechnol & Instrumentat Opt, Troyes, France
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[4] Nanyang Technol Univ, Sch Elect & Elect Engn, Div Microelect, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
ENHANCED RAMAN-SCATTERING; DISCRETE-DIPOLE APPROXIMATION; SILVER NANOPARTICLES; OPTICAL-PROPERTIES; SPECTROSCOPY; SIZE; SPOTS; SHAPE; SERS; HOT;
D O I
10.1021/jz302018x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sensitivity is a key factor in the improvement of nanoparticle-based biosensors. Bowtie nanoantennae have shown high sensitivity for both surface-enhanced Raman scattering (SERS)- and localized surface plasmon resonance (LSPR)-based biosensing. In this work, optical bowtie nanoantennae with varying geometries were simulated, fabricated, and characterized. We successfully fabricated sub-5 nm gaps between prisms. The gap between prisms, the prism size, and the radius of curvature of the prism corners were characterized for their effects on the optical and electromagnetic properties. Bowties were characterized using LSPR, SERS, and photochemical near-field imaging. The results indicate that the radius of curvature of the prism corners has an important effect on the SERS abilities of a nanoparticle array. The trends described herein can be utilized to intelligently design highly sensitive SERS and LSPR biosensing substrates.
引用
收藏
页码:496 / 501
页数:6
相关论文
共 50 条
[21]   Effective Enrichment of Plasmonic Hotspots for SERS by Spinning Droplets on a Slippery Concave Dome Array [J].
Wu, Jialin ;
Cai, Jianpeng ;
Fan, Yuan ;
Zhang, Ying ;
Fang, Hui ;
Yan, Sheng .
BIOSENSORS-BASEL, 2022, 12 (05)
[22]   A 3D Plasmonic Antenna-Reactor for Nanoscale Thermal Hotspots and Gradients [J].
Dongare, Pratiksha D. ;
Zhao, Yage ;
Renard, David ;
Yang, Jian ;
Neumann, Oara ;
Metz, Jordin ;
Yuan, Lin ;
Alabastri, Alessandro ;
Nordlander, Peter ;
Halas, Naomi J. .
ACS NANO, 2021, 15 (05) :8761-8769
[23]   Plasmonic DNA hotspots made from tungsten disulfide nanosheets and gold nanoparticles for ultrasensitive aptamer-based SERS detection of myoglobin [J].
Shorie, Munish ;
Kumar, Vinod ;
Kaur, Harmanjit ;
Singh, Kulvinder ;
Tomer, Vijay K. ;
Sabherwal, Priyanka .
MICROCHIMICA ACTA, 2018, 185 (03)
[24]   Accessing Plasmonic Hotspots Using Nanoparticle-on-Foil Constructs [J].
Chikkaraddy, Rohit ;
Baumberg, Jeremy J. .
ACS PHOTONICS, 2021, 8 (09) :2811-2817
[25]   Plasmonic hotspots of dynamically assembled nanoparticles in nanocapillaries: Towards a micro ribonucleic acid profiling platform [J].
Liu, Shoupeng ;
Yan, Yu ;
Wang, Yunshan ;
Senapati, Satyajyoti ;
Chang, Hsueh-Chia .
BIOMICROFLUIDICS, 2013, 7 (06)
[26]   Tunable Plasmonic SERS "Hotspots" on Au-Film Over Nanosphere by Rapid Thermal Annealing [J].
Purwidyantri, Agnes ;
El-Mekki, Imene ;
Lai, Chao-Sung .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2017, 16 (04) :551-559
[27]   Dynamic Placement of Plasmonic Hotspots for Super-resolution Surface-Enhanced Raman Scattering [J].
Ertsgaard, Christopher T. ;
McKoskey, Rachel M. ;
Rich, Isabel S. ;
Lindquist, Nathan C. .
ACS NANO, 2014, 8 (10) :10941-10946
[28]   Optically and elastically assembled plasmonic nanoantennae for spatially resolved characterization of chemical composition in soft matter systems using surface enhanced spontaneous and stimulated Raman scattering [J].
Mundoor, Haridas ;
Lee, Taewoo ;
Gann, Derek G. ;
Ackerman, Paul J. ;
Senyuk, Bohdan ;
van de Lagemaat, Jao ;
Smalyukh, Ivan I. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (06)
[29]   Plasmonic-Enhanced Molecular Fluorescence within Isolated Bowtie Nano-Apertures [J].
Lu, Guowei ;
Li, Wenqiang ;
Zhang, Tianyue ;
Yue, Song ;
Liu, Jie ;
Hou, Lei ;
Li, Zhi ;
Gong, Qihuang .
ACS NANO, 2012, 6 (02) :1438-1448
[30]   Tunable potential well for plasmonic trapping of metallic particles by bowtie nano-apertures [J].
Lu, Yu ;
Du, Guangqing ;
Chen, Feng ;
Yang, Qing ;
Bian, Hao ;
Yong, Jiale ;
Hou, Xun .
SCIENTIFIC REPORTS, 2016, 6