Sobolev homeomorphic extensions onto John domains

被引:8
作者
Koskela, Pekka [1 ]
Koski, Aleksis [1 ]
Onninen, Jani [1 ,2 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, FI-40014 Jyvaskyla, Finland
[2] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
基金
芬兰科学院;
关键词
Sobolev homeomorphisms; Sobolev extensions; John domains; Quasidisks; LIPSCHITZ; QUASICIRCLES; DISKS;
D O I
10.1016/j.jfa.2020.108719
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the classical Jordan-Schiienflies theorem may admit no solution - it is possible to have a boundary homeomorphism which admits a continuous W-1,W-2-extension but not even a homeomorphic W-1,W-2-extension. We prove that if the target is assumed to be a John disk, then any boundary homeomorphism from the unit circle admits a Sobolev homeomorphic extension for all exponents p < 2. John disks, being one sided quasidisks, are of fundamental importance in Geometric Function Theory. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 32 条
[1]  
Antman S.S., 1995, APPL MATH SCI, V107
[2]  
Astala K., 2009, ELLIPTIC PARTIAL DIF
[3]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[4]  
Broch O.J., 2004, COMPUT METHODS FUNCT, V4, P419
[5]  
Broch OJ, 2006, ANN ACAD SCI FENN-M, V31, P13
[6]   John disks are local bilipschitz images of quasidisks [J].
Broch, Ole Jacob .
HIROSHIMA MATHEMATICAL JOURNAL, 2008, 38 (02) :193-201
[7]   John Disks and K-Quasiconformal Harmonic Mappings [J].
Chen, Shaolin ;
Ponnusamy, Saminathan .
JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (02) :1468-1488
[8]  
Ciarlet P.G., 1988, STUDIES MATH ITS APP, V20
[9]  
Gehring F.W., 1982, SEMINAIRE MATH SUPER, V84
[10]   QUASIHYPERBOLIC GEODESICS IN JOHN DOMAINS [J].
GEHRING, FW ;
HAG, K ;
MARTIO, O .
MATHEMATICA SCANDINAVICA, 1989, 65 (01) :75-92