Understanding Kappa Distributions: A Toolbox for Space Science and Astrophysics

被引:341
作者
Livadiotis, G. [1 ]
McComas, D. J. [1 ,2 ]
机构
[1] SW Res Inst, San Antonio, TX USA
[2] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA
关键词
Plasmas; Statistical mechanics; Thermodynamics; Heliosphere; Solar wind; PICK-UP IONS; SOLAR-WIND; SPECTRAL PROPERTIES; TERMINATION SHOCK; PLASMA; ATOM; HELIOSHEATH; ELECTRONS; ENTROPY; AU;
D O I
10.1007/s11214-013-9982-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we examine the physical foundations and theoretical development of the kappa distribution, which arises naturally from non-extensive Statistical Mechanics. The kappa distribution provides a straightforward replacement for the Maxwell distribution when dealing with systems in stationary states out of thermal equilibrium, commonly found in space and astrophysical plasmas. Prior studies have used a variety of inconsistent, and sometimes incorrect, formulations, which have led to significant confusion about these distributions. Therefore, in this study, we start from the N-particle phase space distribution and develop seven formulations for kappa distributions that range from the most general to several specialized versions that can be directly used with common types of space data. Collectively, these formulations and their guidelines provide a "toolbox" of useful and statistically well-grounded equations for future space physics analyses that seek to apply kappa distributions in data analysis, simulations, modeling, theory, and other work.
引用
收藏
页码:183 / 214
页数:32
相关论文
共 82 条
[1]   Axioms and uniqueness theorem for Tsallis entropy [J].
Abe, S .
PHYSICS LETTERS A, 2000, 271 (1-2) :74-79
[2]   Stability of Tsallis entropy and instabilities of Renyi and normalized Tsallis entropies:: A basis for q-exponential distributions -: art. no. 046134 [J].
Abe, S .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[3]   General pseudoadditivity of composable entropy prescribed by the existence of equilibrium [J].
Abe, S .
PHYSICAL REVIEW E, 2001, 63 (06) :1-061105
[4]  
Abramowitz Milton., 1972, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, V10th, P946
[5]  
[Anonymous], 2009, SPRINGER
[6]   Dust-acoustic wave modulation in the presence of q-nonextensive electrons and/or ions in dusty plasma [J].
Bains, A. S. ;
Tribeche, M. ;
Ng, C. S. .
ASTROPHYSICS AND SPACE SCIENCE, 2013, 343 (02) :621-628
[7]   Dust ion acoustic solitons in a plasma with kappa-distributed electrons [J].
Baluku, T. K. ;
Hellberg, M. A. ;
Kourakis, I. ;
Saini, N. S. .
PHYSICS OF PLASMAS, 2010, 17 (05)
[8]  
BAME SJ, 1992, ASTRON ASTROPHYS SUP, V92, P237
[9]   Nonequilibrium probabilistic dynamics of the logistic map at the edge of chaos -: art. no. 254103 [J].
Borges, EP ;
Tsallis, C ;
Añaños, GFJ ;
de Oliveira, PMC .
PHYSICAL REVIEW LETTERS, 2002, 89 (25)
[10]   On a q-generalization of circular and hyperbolic functions [J].
Borges, EP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (23) :5281-5288