Clinical Value of RNA Sequencing-Based Classifiers for Prediction of the Five Conventional Breast Cancer Biomarkers: A Report From the Population-Based Multicenter Sweden Cancerome Analysis Network-Breast Initiative

被引:132
作者
Brueffer, Christian [1 ]
Vallon-Christersson, Johan [1 ]
Grabau, Dorthe [2 ]
Ehinger, Anna [1 ,2 ,3 ]
Hakkinen, Jari [1 ]
Hegardt, Cecilia [1 ]
Malina, Janne [4 ]
Chen, Yilun [1 ]
Bendahl, Par-Ola [1 ]
Manjer, Jonas [1 ,4 ]
Malmberg, Martin [2 ]
Larsson, Christer [1 ]
Loman, Niklas [1 ,2 ]
Ryden, Lisa [1 ,2 ]
Borg, Ake [1 ]
Saal, Lao H. [1 ]
机构
[1] Lund Univ, Lund, Sweden
[2] Skane Univ Hosp Lund, Lund, Sweden
[3] Blekinge Cty Hosp, Karlskrona, Sweden
[4] Skane Univ Hosp Malmo, Malmo, Sweden
基金
瑞典研究理事会;
关键词
PRACTICE GUIDELINES; INTERNATIONAL KI67; HISTOLOGIC GRADE; POOR-PROGNOSIS; GENE; EXPRESSION; REPRODUCIBILITY; HER2; RECOMMENDATIONS; SIGNATURE;
D O I
10.1200/PO.17.00135
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose In early breast cancer (BC), five conventional biomarkers-estrogen receptor (ER), progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), Ki67, and Nottingham histologic grade (NHG)-are used to determine prognosis and treatment. We aimed to develop classifiers for these biomarkers that were based on tumor RNA sequencing (RNA-seq), compare classification performance, and test whether such predictors could add value for risk stratification. Methods In total, 3,678 patients with BC were studied. For 405 tumors, a comprehensive multi-rater histopathologic evaluation was performed. Using RNA-seq data, single-gene classifiers and multigene classifiers (MGCs) were trained on consensus histopathology labels. Trained classifiers were tested on a prospective population-based series of 3,273 BCs that included a median follow-up of 52 months (Sweden Cancerome Analysis Network-Breast [SCAN-B], ClinicalTrials.gov identifier: NCT02306096), and results were evaluated by agreement statistics and Kaplan-Meier and Cox survival analyses. Results Pathologist concordance was high for ER, PgR, and HER2 (average kappa, 0.920, 0.891, and 0.899, respectively) but moderate for Ki67 and NHG (average kappa, 0.734 and 0.581). Concordance between RNA-seq classifiers and histopathology for the independent cohort of 3,273 was similar to interpathologist concordance. Patients with discordant classifications, predicted as hormone responsive by histopathology but non-hormone responsive by MGC, had significantly inferior overall survival compared with patients who had concordant results. This extended to patients who received no adjuvant therapy (hazard ratio [HR], 3.19; 95% CI, 1.19 to 8.57), or endocrine therapy alone 2.64; 95% CI, 1.55 to 4.51). For cases identified as hormone responsive by histopathology and who received endocrine therapy alone, the MGC hormone-responsive classifier remained significant after multivariable adjustment (HR, 2.45; 95% CI, 1.39 to 4.34). Conclusion Classification error rates for RNA-seq-based classifiers for the five key BC biomarkers generally were equivalent to conventional histopathology. However, RNA-seq classifiers provided added clinical value in particular for tumors determined by histopathology to be hormone responsive but by RNA-seq to be hormone insensitive. (C) 2018 by American Society of Clinical Oncology Licensed under the Creative Commons Attribution 4.0 License
引用
收藏
页码:1 / 18
页数:18
相关论文
共 36 条
[1]   A Machine Learned Classifier That Uses Gene Expression Data to Accurately Predict Estrogen Receptor Status [J].
Bastani, Meysam ;
Vos, Larissa ;
Asgarian, Nasimeh ;
Deschenes, Jean ;
Graham, Kathryn ;
Mackey, John ;
Greiner, Russell .
PLOS ONE, 2013, 8 (12)
[2]  
Boiesen P, 2000, ACTA ONCOL, V39, P41
[3]   70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer [J].
Cardoso, F. ;
van't Veer, L. J. ;
Bogaerts, J. ;
Slaets, L. ;
Viale, G. ;
Delaloge, S. ;
Pierga, J. -Y. ;
Brain, E. ;
Causeret, S. ;
DeLorenzi, M. ;
Glas, A. M. ;
Golfinopoulos, V. ;
Goulioti, T. ;
Knox, S. ;
Matos, E. ;
Meulemans, B. ;
Neijenhuis, P. A. ;
Nitz, U. ;
Passalacqua, R. ;
Ravdin, P. ;
Rubio, I. T. ;
Saghatchian, M. ;
Smilde, T. J. ;
Sotiriou, C. ;
Stork, L. ;
Straehle, C. ;
Thomas, G. ;
Thompson, A. M. ;
van der Hoeven, J. M. ;
Vuylsteke, P. ;
Bernards, R. ;
Tryfonidis, K. ;
Rutgers, E. ;
Piccart, M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2016, 375 (08) :717-729
[4]   HIGH AGREEMENT BUT LOW KAPPA .2. RESOLVING THE PARADOXES [J].
CICCHETTI, DV ;
FEINSTEIN, AR .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 1990, 43 (06) :551-558
[5]   The use of exome capture RNA-seq for highly degraded RNA with application to clinical cancer sequencing [J].
Cieslik, Marcin ;
Chugh, Rashmi ;
Wu, Yi-Mi ;
Wu, Ming ;
Brennan, Christine ;
Lonigro, Robert ;
Su, Fengyun ;
Wang, Rui ;
Siddiqui, Javed ;
Mehra, Rohit ;
Cao, Xuhong ;
Lucas, David ;
Chinnaiyan, Arul M. ;
Robinson, Dan .
GENOME RESEARCH, 2015, 25 (09) :1372-1381
[6]  
Dhondalay G. K., 2011, Proceedings of the 2011 International Conference on Machine Learning and Cybernetics (ICMLC 2011), P727, DOI 10.1109/ICMLC.2011.6016771
[7]   Assessment of Ki67 in Breast Cancer: Recommendations from the International Ki67 in Breast Cancer Working Group [J].
Dowsett, Mitch ;
Nielsen, Torsten O. ;
A'Hern, Roger ;
Bartlett, John ;
Coombes, R. Charles ;
Cuzick, Jack ;
Ellis, Matthew ;
Henry, N. Lynn ;
Hugh, Judith C. ;
Lively, Tracy ;
McShane, Lisa ;
Paik, Soon ;
Penault-Llorca, Frederique ;
Prudkin, Ljudmila ;
Regan, Meredith ;
Salter, Janine ;
Sotiriou, Christos ;
Smith, Ian E. ;
Viale, Giuseppe ;
Zujewski, Jo Anne ;
Hayes, Daniel F. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2011, 103 (22) :1656-1664
[8]   Highly reproducible results of breast cancer biomarkers when analysed in accordance with national guidelines - a Swedish survey with central re-assessment [J].
Ekholm, Maria ;
Grabau, Dorthe ;
Bendahl, Par-Ola ;
Bergh, Jonas ;
Elmberger, Goran ;
Olsson, Hans ;
Russo, Leila ;
Viale, Giuseppe ;
Ferno, Marten .
ACTA ONCOLOGICA, 2015, 54 (07) :1040-1048
[9]   St. Gallen/Vienna 2015: A Brief Summary of the Consensus Discussion [J].
Gnant, Michael ;
Thomssen, Christoph ;
Harbeck, Nadia .
BREAST CARE, 2015, 10 (02) :124-130
[10]   Breast Cancer Version 3.2014 Clinical Practice Guidelines in Oncology [J].
Gradishar, William J. ;
Anderson, Benjamin O. ;
Blair, Sarah L. ;
Burstein, Harold J. ;
Cyr, Amy ;
Elias, Anthony D. ;
Farrar, William B. ;
Forero, Andres ;
Giordano, Sharon Hermes ;
Goldstein, Lori J. ;
Hayes, Daniel F. ;
Hudis, Clifford A. ;
Isakoff, Steven J. ;
Ljung, Britt-Marie E. ;
Marcom, P. Kelly ;
Mayer, Ingrid A. ;
McCormick, Beryl ;
Miller, Robert S. ;
Pegram, Mark ;
Pierce, Lori J. ;
Reed, Elizabeth C. ;
Salerno, Kilian E. ;
Schwartzberg, Lee S. ;
Smith, Mary Lou ;
Soliman, Hatem ;
Somlo, George ;
Ward, John H. ;
Wolff, Antonio C. ;
Zellars, Richard ;
Shead, Dorothy A. ;
Kumar, Rashmi .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2014, 12 (04) :542-590