Band structure in the polymer quantization of the harmonic oscillator

被引:15
作者
Fernando Barbero G, J. [1 ,2 ]
Prieto, Jorge [3 ]
Villasenor, Eduardo J. S. [2 ,3 ]
机构
[1] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain
[2] Univ Carlos III Madrid, Unidad Asociada IEM CSIC, Inst Univ Gregorio Millan Barbany, Grp Teorias Campos & Fis Estadist, Madrid, Spain
[3] Univ Carlos III Madrid, Inst Gregorio Millan, Grp Modelizac & Simulac Numer, E-28911 Leganes, Spain
关键词
BACKGROUND INDEPENDENT QUANTIZATIONS; PERIODIC SCHRODINGER-OPERATORS; SCALAR FIELD; QUANTUM; REPRESENTATIONS; L2(BR);
D O I
10.1088/0264-9381/30/16/165011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss the detailed structure of the spectrum of the Hamiltonian for the polymerized harmonic oscillator and compare it with the spectrum in the standard quantization. As we will see the non-separability of the Hilbert space implies that the point spectrum consists of bands similar to the ones appearing in the treatment of periodic potentials. This feature of the spectrum of the polymeric harmonic oscillator may be relevant for the discussion of the polymer quantization of the scalar field and may have interesting consequences for the statistical mechanics of these models.
引用
收藏
页数:15
相关论文
共 31 条
[11]   THE QUANTUM HARMONIC-OSCILLATOR ON A LATTICE [J].
CHALBAUD, E ;
GALLINAR, JP ;
MATA, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (07) :L385-L390
[13]   EIGENVALUES OF ALMOST PERIODIC SCHRODINGER-OPERATORS IN L2(BR) ARE AT MOST DOUBLE [J].
CHOJNACKI, W .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 22 (01) :7-10
[14]  
Chojnacki W, 1987, REND CIRC MAT PALE S, P135
[15]  
Corichi A, 2012, ARXIV12021846V2GRQC
[16]   Hamiltonian and physical Hilbert space in polymer quantum mechanics [J].
Corichi, Alejandro ;
Vukasinac, Tatjana ;
Zapata, Jose A. .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (06) :1495-1511
[17]   Polymer quantum mechanics and its continuum limit [J].
Corichi, Alejandro ;
Vukasinac, Tatjana ;
Zapata, Jose A. .
PHYSICAL REVIEW D, 2007, 76 (04)
[18]  
Domagala M, 2011, P 3 QUANT GEOM QUANT
[19]   Black Hole Entropy and SU(2) Chern-Simons Theory [J].
Engle, Jonathan ;
Noui, Karim ;
Perez, Alejandro .
PHYSICAL REVIEW LETTERS, 2010, 105 (03)
[20]   The thermodynamic limit and black hole entropy in the area ensemble [J].
Fernando Barbero G, J. ;
Villasenor, Eduardo J. S. .
CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (21)