How do mammalian transposons induce genetic variation? A conceptual framework The age, structure, allele frequency, and genome context of transposable elements may define their wide-ranging biological impacts

被引:16
作者
Akagi, Keiko [1 ,2 ]
Li, Jingfeng [1 ,2 ]
Symer, David E. [1 ,2 ,3 ,4 ]
机构
[1] Ohio State Univ, Ctr Comprehens Canc, Human Canc Genet Program, Columbus, OH 43210 USA
[2] Ohio State Univ, Ctr Comprehens Canc, Dept Mol Virol Immunol & Med Genet, Columbus, OH 43210 USA
[3] Ohio State Univ, Ctr Comprehens Canc, Dept Internal Med, Columbus, OH 43210 USA
[4] Ohio State Univ, Ctr Comprehens Canc, Dept Biomed Informat, Columbus, OH 43210 USA
关键词
gene expression; gene regulation; retrotransposon; transcriptional variation; transposition; EMBRYONIC STEM-CELLS; LONG TERMINAL REPEAT; L1; RETROTRANSPOSITION; SOMATIC RETROTRANSPOSITION; ENDOGENOUS RETROVIRUSES; MOBILE ELEMENTS; LINE-1; RNA; MOUSE; LANDSCAPE; EVOLUTION;
D O I
10.1002/bies.201200133
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this essay, we discuss new insights into the wide-ranging impacts of mammalian transposable elements (TE) on gene expression and function. Nearly half of each mammalian genome is comprised of these mobile, repetitive elements. While most TEs are ancient relics, certain classes can move from one chromosomal location to another even now. Indeed, striking recent data show that extensive transposition occurs not only in the germline over evolutionary time, but also in developing somatic tissues and particular human cancers. While occasional germline TE insertions may contribute to genetic variation, many other, similar TEs appear to have little or no impact on neighboring genes. However, the effects of somatic insertions on gene expression and function remain almost completely unknown. We present a conceptual framework to understand how the ages, allele frequencies, molecular structures, and especially the genomic context of mammalian TEs each can influence their various possible functional consequences. Editor's suggested further reading in BioEssays Evolution of eukaryotic genome architecture: Insights from the study of a rapidly evolving metazoan, Oikopleura dioica Abstract
引用
收藏
页码:397 / 407
页数:11
相关论文
共 112 条
[1]   Extensive variation between inbred mouse strains due to endogenous L1 retrotransposition [J].
Akagi, Keiko ;
Li, Jingfeng ;
Stephens, Robert M. ;
Volfovsky, Natalia ;
Symer, David E. .
GENOME RESEARCH, 2008, 18 (06) :869-880
[2]   MouseIndelDB: a database integrating genomic indel polymorphisms that distinguish mouse strains [J].
Akagi, Keiko ;
Stephens, Robert M. ;
Li, Jingfeng ;
Evdokimov, Evgenji ;
Kuehn, Michael R. ;
Volfovsky, Natalia ;
Symer, David E. .
NUCLEIC ACIDS RESEARCH, 2010, 38 :D600-D606
[3]   The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race [J].
Aravin, Alexei A. ;
Hannon, Gregory J. ;
Brennecke, Julius .
SCIENCE, 2007, 318 (5851) :761-764
[4]   Somatic retrotransposition alters the genetic landscape of the human brain [J].
Baillie, J. Kenneth ;
Barnett, Mark W. ;
Upton, Kyle R. ;
Gerhardt, Daniel J. ;
Richmond, Todd A. ;
De Sapio, Fioravante ;
Brennan, Paul ;
Rizzu, Patrizia ;
Smith, Sarah ;
Fell, Mark ;
Talbot, Richard T. ;
Gustincich, Stefano ;
Freeman, Thomas C. ;
Mattick, John S. ;
Hume, David A. ;
Heutink, Peter ;
Carninci, Piero ;
Jeddeloh, Jeffrey A. ;
Faulkner, Geoffrey J. .
NATURE, 2011, 479 (7374) :534-537
[5]   The Take and Give Between Retrotransposable Elements and their Hosts [J].
Beauregard, Arthur ;
Curcio, M. Joan ;
Belfort, Marlene .
ANNUAL REVIEW OF GENETICS, 2008, 42 :587-617
[6]   The impact of multiple splice sites in human L1 elements [J].
Belancio, V. P. ;
Roy-Engel, A. M. ;
Deininger, P. .
GENE, 2008, 411 (1-2) :38-45
[7]   Mammalian non-LTR retrotransposons: For better or worse, in sickness and in health [J].
Belancio, Victoria P. ;
Hedges, Dale J. ;
Deininger, Prescott .
GENOME RESEARCH, 2008, 18 (03) :343-358
[8]   LINE-1 RNA splicing and influences on mammalian gene expression [J].
Belancio, VP ;
Hedges, DJ ;
Deininger, P .
NUCLEIC ACIDS RESEARCH, 2006, 34 (05) :1512-1521
[9]   RNA polymerase III transcribes human microRNAs [J].
Borchert, Glen M. ;
Lanier, William ;
Davidson, Beverly L. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2006, 13 (12) :1097-1101
[10]   Evolution of the mammalian transcription factor binding repertoire via transposable elements [J].
Bourque, Guillaume ;
Leong, Bernard ;
Vega, Vinsensius B. ;
Chen, Xi ;
Lee, Yen Ling ;
Srinivasan, Kandhadayar G. ;
Chew, Joon-Lin ;
Ruan, Yijun ;
Wei, Chia-Lin ;
Ng, Huck Hui ;
Liu, Edison T. .
GENOME RESEARCH, 2008, 18 (11) :1752-1762