Characteristics, Emission Sources, and Risk Factors of Heavy Metals in PM2.5 from Southern Malaysia

被引:34
作者
Alias, Nor Fathiah [1 ]
Khan, Md Firoz [1 ,7 ]
Sairi, Nor Asrina [1 ]
Zain, Sharifuddin Md [1 ]
Suradi, Hamidah [1 ]
Ab Rahim, Haasyimah [1 ]
Banerjee, Tirthankar [2 ,3 ]
Bari, Md Aynul [4 ]
Othman, Murnira [5 ]
Latif, Mohd Talib [6 ]
机构
[1] Univ Malaya, Fac Sci, Dept Chem, Kuala Lumpur 50603, Malaysia
[2] Banaras Hindu Univ, Inst Environm & Sustainable Dev, Varanasi 221005, Uttar Pradesh, India
[3] Banaras Hindu Univ, DST Mahamana Ctr Excellence Climate Change Res, Varanasi 221005, Uttar Pradesh, India
[4] SUNY Albany, Dept Environm & Sustainable Engn, Coll Engn & Appl Sci, Albany, NY 12222 USA
[5] Univ Kebangsaan Malaysia, Inst Environm & Dev LESTARI, Bangi 43600, Selangor, Malaysia
[6] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Earth Sci & Environm, Bangi 43600, Selangor, Malaysia
[7] China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou 221116, Jiangsu, Peoples R China
来源
ACS EARTH AND SPACE CHEMISTRY | 2020年 / 4卷 / 08期
关键词
fine particulate matter; trace metals; absolute principal component score; hazard quotient; carcinogens; AMBIENT AIR-POLLUTION; SOURCE APPORTIONMENT; PARTICULATE MATTER; TRACE-ELEMENTS; INDUSTRIAL-AREA; SOURCE IDENTIFICATION; GLOBAL BURDEN; KUALA-LUMPUR; URBAN; DEPOSITION;
D O I
10.1021/acsearthspacechem.0c00103
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Exposure to fine particulate-bound toxic metals in ambient air poses adverse effects to human. This study aims to determine the spatial variability in heavy metals in PM2.5, samples, for identifying their potential sources and to perform health risk modelling. PM2.5 samples were collected using a high-volume sampler on a 24 h basis from three sites in Johor areas in Malaysia from January to March 2019. Metals were initially extracted using microwave-assisted digestion and the metal concentrations were analyzed using inductively coupled plasma mass spectroscopy. Overall, the abundant metals in PM2.5 among the metals analyzed were Zn with mean 29.92 ng/m(3 )and Se with mean 27.02 ng/m(3). The sources of PM-bound metals were identified using absolute principal component score with multiple linear regression. The major contribution was noted from vehicle emission (41%). Other potential sources for the metals in PM2.5 were from coal-fired power plants (34%) and oil refineries and industrial emission (4%), leaving 22% of metals undefined. From the health risk analysis, the hazard quotient (HQ) and excess lifetime cancer risk (ELCR) values of the metals were within the tolerance level. The trend for HQ values was Co < Zn < Pb < Cu < Ni < As for adolescents and Co < Zn < Cu < Pb < Ni < As for adult age, whereas for ELCR values, the trends were the same for both adolescent and adult age groups as Pb < Ni < As. Few of the toxic metals showed comparatively high HQ values that might be a risk in long-term exposure. Considering the highest noted contribution from vehicular emissions, it is advised to raise public awareness to practice carpooling and use public transportation to reduce emissions from vehicular sources.
引用
收藏
页码:1309 / 1323
页数:15
相关论文
共 68 条
[1]   Characteristics and source Analysis of trace Elements in PM2.5 in the Urban Atmosphere of Wuhan in Spring [J].
Acciai, Costanza ;
Zhang, Zhenyi ;
Wang, Fenjuan ;
Zhong, Zhangxiong ;
Lonati, Giovanni .
AEROSOL AND AIR QUALITY RESEARCH, 2017, 17 (09) :2224-2234
[2]  
Anderson JO, 2012, J MED TOXICOL, V8, P166, DOI 10.1007/s13181-011-0203-1
[3]  
[Anonymous], GUID CARC RISK ASS
[4]  
[Anonymous], 2016, World Health Organisation, Global Information System on Alcohol and Health (GISAH)
[5]  
[Anonymous], 1989, Risk Assessment Guidance for Superfund, VI, P291
[6]  
[Anonymous], 2004, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Tobacco Smoke and Involuntary Smoking
[7]   A new methodology to assess the performance and uncertainty of source apportionment models II: The results of two European intercomparison exercises [J].
Belis, C. A. ;
Karagulian, F. ;
Amato, F. ;
Almeida, M. ;
Artaxo, P. ;
Beddows, D. C. S. ;
Bernardoni, V. ;
Bove, M. C. ;
Carbone, S. ;
Cesari, D. ;
Contini, D. ;
Cuccia, E. ;
Diapouli, E. ;
Eleftheriadis, K. ;
Favez, O. ;
El Haddad, I. ;
Harrison, R. M. ;
Hellebust, S. ;
Hovorka, J. ;
Jang, E. ;
Jorquera, H. ;
Kammermeier, T. ;
Karl, M. ;
Lucarelli, F. ;
Mooibroek, D. ;
Nava, S. ;
Nojgaard, J. K. ;
Paatero, P. ;
Pandolfi, M. ;
Perrone, M. G. ;
Petit, J. E. ;
Pietrodangelo, A. ;
Pokorna, P. ;
Prati, P. ;
Prevot, A. S. H. ;
Quass, U. ;
Querol, X. ;
Saraga, D. ;
Sciare, J. ;
Sfetsos, A. ;
Valli, G. ;
Vecchi, R. ;
Vestenius, M. ;
Yubero, E. ;
Hopke, P. K. .
ATMOSPHERIC ENVIRONMENT, 2015, 123 :240-250
[8]   Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013 [J].
Brauer, Michael ;
Freedman, Greg ;
Frostad, Joseph ;
van Donkelaar, Aaron ;
Martin, Randall V. ;
Dentener, Frank ;
van Dingenen, Rita ;
Estep, Kara ;
Amini, Heresh ;
Apte, Joshua S. ;
Balakrishnan, Kalpana ;
Barregard, Lars ;
Broday, David ;
Feigin, Valery ;
Ghosh, Santu ;
Hopke, Philip K. ;
Knibbs, Luke D. ;
Kokubo, Yoshihiro ;
Liu, Yang ;
Ma, Stefan ;
Morawska, Lidia ;
Texcalac Sangrador, Jose Luis ;
Shaddick, Gavin ;
Anderson, H. Ross ;
Vos, Theo ;
Forouzanfar, Mohammad H. ;
Burnett, Richard T. ;
Cohen, Aaron .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (01) :79-88
[9]  
Calderon-Garciduenas L., 2020, ENVIRON RES, V183, P109137
[10]   Source apportionment of PM2.5 in the harbour-industrial area of Brindisi (Italy): Identification and estimation of the contribution of in-port ship emissions [J].
Cesari, D. ;
Genga, A. ;
Ielpo, P. ;
Siciliano, M. ;
Mascolo, G. ;
Grasso, F. M. ;
Contini, D. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2014, 497 :392-400