Multiple sclerosis lesion activity segmentation with attention-guided two-path CNNs

被引:35
作者
Gessert, Nils [1 ]
Krueger, Julia [2 ]
Opfer, Roland [2 ]
Ostwaldt, Ann-Christin [2 ]
Manogaran, Praveena [3 ,4 ]
Kitzler, Hagen H. [5 ]
Schippling, Sven [3 ,4 ]
Schlaefer, Alexander [1 ]
机构
[1] Hamburg Univ Technol, Inst Med Technol, Schwarzenberg Campus 3, D-21073 Hamburg, Germany
[2] Jung Diagnost GmbH, Rontgenstr 24, D-22335 Hamburg, Germany
[3] Univ Hosp Zurich, Frauenklin Str 26, CH-8091 Zurich, Switzerland
[4] Univ Zurich, Dept Neurol, Frauenklin Str 26, CH-8091 Zurich, Switzerland
[5] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Inst Diagnost & Intervent Neuroradiol, D-01062 Dresden, Germany
关键词
Multiple sclerosis; Lesion activity; Segmentation; Deep learning; Attention; WHITE-MATTER LESIONS; AUTOMATED SEGMENTATION; MRI; SUBTRACTION; BRAIN;
D O I
10.1016/j.compmedimag.2020.101772
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Multiple sclerosis is an inflammatory autoimmune demyelinating disease that is characterized by lesions in the central nervous system. Typically, magnetic resonance imaging (MRI) is used for tracking disease progression. Automatic image processing methods can be used to segment lesions and derive quantitative lesion parameters. So far, methods have focused on lesion segmentation for individual MRI scans. However, for monitoring disease progression, lesion activity in terms of new and enlarging lesions between two time points is a crucial biomarker. For this problem, several classic methods have been proposed, e.g., using difference volumes. Despite their success for single-volume lesion segmentation, deep learning approaches are still rare for lesion activity segmentation. In this work, convolutional neural networks (CNNs) are studied for lesion activity segmentation from two time points. For this task, CNNs are designed and evaluated that combine the information from two points in different ways. In particular, two-path architectures with attention-guided interactions are proposed that enable effective information exchange between the two time point's processing paths. It is demonstrated that deep learning-based methods outperform classic approaches and it is shown that attention-guided interactions significantly improve performance. Furthermore, the attention modules produce plausible attention maps that have a masking effect that suppresses old, irrelevant lesions. A lesion-wise false positive rate of 26.4 % is achieved at a true positive rate of 74.2 %, which is not significantly different from the interrater performance.
引用
收藏
页数:8
相关论文
共 44 条
  • [1] Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions
    Akkus, Zeynettin
    Galimzianova, Alfiia
    Hoogi, Assaf
    Rubin, Daniel L.
    Erickson, Bradley J.
    [J]. JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) : 449 - 459
  • [2] [Anonymous], 2018, ECCV
  • [3] [Anonymous], 2016, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2016.90
  • [4] Automated Identification of Brain New Lesions in Multiple Sclerosis Using Subtraction Images
    Battaglini, Marco
    Rossi, Francesca
    Grove, Richard A.
    Stromillo, Maria Laura
    Whitcher, Brandon
    Matthews, Paul M.
    De Stefano, Nicola
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2014, 39 (06) : 1543 - 1549
  • [5] Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation
    Brosch, Tom
    Tang, Lisa Y. W.
    Yoo, Youngjin
    Li, David K. B.
    Traboulsee, Anthony
    Tam, Roger
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1229 - 1239
  • [6] Improved Automatic Detection of New T2 Lesions in Multiple Sclerosis Using Deformation Fields
    Cabezas, M.
    Corral, J. F.
    Oliver, A.
    Diez, Y.
    Tintore, M.
    Auger, C.
    Montalban, X.
    Llado, X.
    Pareto, D.
    Rovira, A.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2016, 37 (10) : 1816 - 1823
  • [7] Longitudinal multiple sclerosis lesion segmentation: Resource and challenge
    Carass, Aaron
    Roy, Snehashis
    Jog, Amod
    Cuzzocreo, Jennifer L.
    Magrath, Elizabeth
    Gherman, Adrian
    Button, Julia
    Nguyen, James
    Prados, Ferran
    Sudre, Carole H.
    Cardoso, Manuel Jorge
    Cawley, Niamh
    Ciccarelli, Olga
    Wheeler-Kingshott, Claudia A. M.
    Ourselin, Sebastien
    Catanese, Laurence
    Deshpande, Hrishikesh
    Maurel, Pierre
    Commowick, Olivier
    Barillot, Christian
    Tomas-Fernandez, Xavier
    Warfield, Simon K.
    Vaidya, Suthirth
    Chunduru, Abhijith
    Muthuganapathy, Ramanathan
    Krishnamurthi, Ganapathy
    Jesson, Andrew
    Arbel, Tal
    Maier, Oskar
    Handeles, Heinz
    Iheme, Leonardo O.
    Unay, Devrim
    Jain, Saurabh
    Sima, Diana M.
    Smeets, Dirk
    Ghafoorian, Mohsen
    Platel, Bram
    Birenbaum, Ariel
    Greenspan, Hayit
    Bazin, Pierre-Louis
    Calabresi, Peter A.
    Crainiceanu, Ciprian M.
    Ellingsen, Lotta M.
    Reich, Daniel S.
    Prince, Jerry L.
    Pham, Dzung L.
    [J]. NEUROIMAGE, 2017, 148 : 77 - 102
  • [8] VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images
    Chen, Hao
    Dou, Qi
    Yu, Lequan
    Qin, Jing
    Heng, Pheng-Ann
    [J]. NEUROIMAGE, 2018, 170 : 446 - 455
  • [9] A Multi-scale Multiple Sclerosis Lesion Change Detection in a Multi-sequence MRI
    Cheng, Myra
    Galimzianova, Alfiia
    Lesjak, Ziga
    Spiclin, Ziga
    Lock, Christopher B.
    Rubin, Daniel L.
    [J]. DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, DLMIA 2018, 2018, 11045 : 353 - 360
  • [10] Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging
    Danelakis, Antonios
    Theoharis, Theoharis
    Verganelakis, Dimitrios A.
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2018, 70 : 83 - 100