Multiple sclerosis lesion activity segmentation with attention-guided two-path CNNs

被引:38
作者
Gessert, Nils [1 ]
Krueger, Julia [2 ]
Opfer, Roland [2 ]
Ostwaldt, Ann-Christin [2 ]
Manogaran, Praveena [3 ,4 ]
Kitzler, Hagen H. [5 ]
Schippling, Sven [3 ,4 ]
Schlaefer, Alexander [1 ]
机构
[1] Hamburg Univ Technol, Inst Med Technol, Schwarzenberg Campus 3, D-21073 Hamburg, Germany
[2] Jung Diagnost GmbH, Rontgenstr 24, D-22335 Hamburg, Germany
[3] Univ Hosp Zurich, Frauenklin Str 26, CH-8091 Zurich, Switzerland
[4] Univ Zurich, Dept Neurol, Frauenklin Str 26, CH-8091 Zurich, Switzerland
[5] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Inst Diagnost & Intervent Neuroradiol, D-01062 Dresden, Germany
关键词
Multiple sclerosis; Lesion activity; Segmentation; Deep learning; Attention; WHITE-MATTER LESIONS; AUTOMATED SEGMENTATION; MRI; SUBTRACTION; BRAIN;
D O I
10.1016/j.compmedimag.2020.101772
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Multiple sclerosis is an inflammatory autoimmune demyelinating disease that is characterized by lesions in the central nervous system. Typically, magnetic resonance imaging (MRI) is used for tracking disease progression. Automatic image processing methods can be used to segment lesions and derive quantitative lesion parameters. So far, methods have focused on lesion segmentation for individual MRI scans. However, for monitoring disease progression, lesion activity in terms of new and enlarging lesions between two time points is a crucial biomarker. For this problem, several classic methods have been proposed, e.g., using difference volumes. Despite their success for single-volume lesion segmentation, deep learning approaches are still rare for lesion activity segmentation. In this work, convolutional neural networks (CNNs) are studied for lesion activity segmentation from two time points. For this task, CNNs are designed and evaluated that combine the information from two points in different ways. In particular, two-path architectures with attention-guided interactions are proposed that enable effective information exchange between the two time point's processing paths. It is demonstrated that deep learning-based methods outperform classic approaches and it is shown that attention-guided interactions significantly improve performance. Furthermore, the attention modules produce plausible attention maps that have a masking effect that suppresses old, irrelevant lesions. A lesion-wise false positive rate of 26.4 % is achieved at a true positive rate of 74.2 %, which is not significantly different from the interrater performance.
引用
收藏
页数:8
相关论文
共 44 条
[1]   Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions [J].
Akkus, Zeynettin ;
Galimzianova, Alfiia ;
Hoogi, Assaf ;
Rubin, Daniel L. ;
Erickson, Bradley J. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :449-459
[2]  
[Anonymous], 2018, ECCV
[3]  
[Anonymous], 2016, P 29 IEEE C COMPUTER
[4]  
[Anonymous], 2017, PROC IEEE C COMPUT V
[5]   Automated Identification of Brain New Lesions in Multiple Sclerosis Using Subtraction Images [J].
Battaglini, Marco ;
Rossi, Francesca ;
Grove, Richard A. ;
Stromillo, Maria Laura ;
Whitcher, Brandon ;
Matthews, Paul M. ;
De Stefano, Nicola .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2014, 39 (06) :1543-1549
[6]   Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation [J].
Brosch, Tom ;
Tang, Lisa Y. W. ;
Yoo, Youngjin ;
Li, David K. B. ;
Traboulsee, Anthony ;
Tam, Roger .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1229-1239
[7]   Improved Automatic Detection of New T2 Lesions in Multiple Sclerosis Using Deformation Fields [J].
Cabezas, M. ;
Corral, J. F. ;
Oliver, A. ;
Diez, Y. ;
Tintore, M. ;
Auger, C. ;
Montalban, X. ;
Llado, X. ;
Pareto, D. ;
Rovira, A. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2016, 37 (10) :1816-1823
[8]   Longitudinal multiple sclerosis lesion segmentation: Resource and challenge [J].
Carass, Aaron ;
Roy, Snehashis ;
Jog, Amod ;
Cuzzocreo, Jennifer L. ;
Magrath, Elizabeth ;
Gherman, Adrian ;
Button, Julia ;
Nguyen, James ;
Prados, Ferran ;
Sudre, Carole H. ;
Cardoso, Manuel Jorge ;
Cawley, Niamh ;
Ciccarelli, Olga ;
Wheeler-Kingshott, Claudia A. M. ;
Ourselin, Sebastien ;
Catanese, Laurence ;
Deshpande, Hrishikesh ;
Maurel, Pierre ;
Commowick, Olivier ;
Barillot, Christian ;
Tomas-Fernandez, Xavier ;
Warfield, Simon K. ;
Vaidya, Suthirth ;
Chunduru, Abhijith ;
Muthuganapathy, Ramanathan ;
Krishnamurthi, Ganapathy ;
Jesson, Andrew ;
Arbel, Tal ;
Maier, Oskar ;
Handeles, Heinz ;
Iheme, Leonardo O. ;
Unay, Devrim ;
Jain, Saurabh ;
Sima, Diana M. ;
Smeets, Dirk ;
Ghafoorian, Mohsen ;
Platel, Bram ;
Birenbaum, Ariel ;
Greenspan, Hayit ;
Bazin, Pierre-Louis ;
Calabresi, Peter A. ;
Crainiceanu, Ciprian M. ;
Ellingsen, Lotta M. ;
Reich, Daniel S. ;
Prince, Jerry L. ;
Pham, Dzung L. .
NEUROIMAGE, 2017, 148 :77-102
[9]   VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images [J].
Chen, Hao ;
Dou, Qi ;
Yu, Lequan ;
Qin, Jing ;
Heng, Pheng-Ann .
NEUROIMAGE, 2018, 170 :446-455
[10]   A Multi-scale Multiple Sclerosis Lesion Change Detection in a Multi-sequence MRI [J].
Cheng, Myra ;
Galimzianova, Alfiia ;
Lesjak, Ziga ;
Spiclin, Ziga ;
Lock, Christopher B. ;
Rubin, Daniel L. .
DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, DLMIA 2018, 2018, 11045 :353-360